Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T01:43:01.854Z Has data issue: false hasContentIssue false

Observations of structural order in ion-implanted amorphous silicon

Published online by Cambridge University Press:  31 January 2011

Ju-Yin Cheng
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801
J. M. Gibson
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
D. C. Jacobson
Affiliation:
Bell Laboratory, Lucent Technology, Murray Hill, New Jersey 07974
Get access

Abstract

Medium-range order in ion-implanted amorphous silicon has been observed using fluctuation electron microscopy. In fluctuation electron microscopy, variance of dark-field image intensity contains the information of high-order atomic correlations, primarily in medium-range order length scale (1–3 nm). Thermal annealing greatly reduces the order and leaves a random network. It appears that the free energy change previously observed on relaxation may therefore be associated with randomization of the network. In this paper, we discuss the origin of the medium-range order during implantation, which can be interpreted as a paracrystalline state, that is, a disordered network enclosing compacts of highly topologically ordered grains on the length scale of 1–3 nm with significant strain fields.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Williams., J.S., Mater. Sci. Eng. A 253, 8 (1998).CrossRefGoogle Scholar
2.Williamson., D.L., Roorda, S., Chicoin, M., Tabti, R., Stolk., P.A., Acco, S., and Saris., F.W., Appl. Phys. Lett. 67, 226 (1995).CrossRefGoogle Scholar
3.Bean., J.C. and Poate., J.M., Appl. Phys. Lett. 36, 59 (1980).CrossRefGoogle Scholar
4.Roorda, S., Sinke., W.C., Poate., J.M., Jacobson., D.C., Dierker, S., Dennis., B.S., Eaglesham., D.J., Spaepen, F., and Fuoss, P., Phys. Rev. B 44, 3702 (1991).CrossRefGoogle Scholar
5.Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson., J.L., Wang, J., and Moss., S.C., Phys. Rev. Lett. 82, 3460 (1999).CrossRefGoogle Scholar
6.Donovan., E.P., Spaepen, F., Poate., J.M., and Jacobson., D.C., Appl. Phys. Lett. 55, 1516 (1989).CrossRefGoogle Scholar
7.Gibson., J.M., Treacy, M.M.J., and Voyles., P.M., Ultramicroscopy 83, 169 (2000).CrossRefGoogle Scholar
8.Gibson., J.M. and Treacy, M.M.J., Phys. Rev. Lett. 78, 1074 (1997).CrossRefGoogle Scholar
9.Treacy, M.M.J., Gibson., J.M., and Keblinski., P.J., J. Non-Cryst Solids 231, 99 (1998).CrossRefGoogle Scholar
10.Gibson., J.M., Treacy, M.M.J., Voyles., P.M., Jin, H-C., and Abelson., J.R., Appl. Phys. Lett. 23, 3093 (1998).CrossRefGoogle Scholar
11.Voyles., P.M., Treacy, M.M.J., and Gibson., J.M. in, New Methods, Mechanisms and Models of Vapor Deposition, edited by Wadley, H.N.G., Gilmer., G.H., and Barker., W.G.. (Mater. Res. Soc. Symp. Proc. 616, Warrendale, PA, 2000), p. 47.Google Scholar
12.Voyles., P.M., Treacy, M.M.J., Gibson., J.M., Jin, H-C., and Abelson., J.R., in Advances in Materials Problem Solving with the Electron Microscope, edited by Bentley, J., Dahmen, V., Allen, C., and Petrov, I. (Mater. Res. Soc. Symp. Proc. 589, Warrendale, PA, 2000), pp. 155160.Google Scholar
13.Drosd, R. and Washburn, J., J. Appl. Phys. 53, 397 (1982).CrossRefGoogle Scholar
14.Ziegler., J.F., Biersack., J.P., and Littmark, U., in The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1996), p. 109.Google Scholar
15.Koprinarov., I.N., Muller-Jahreis, U., Thiele, P., Bouafia, M., and Seghir, A., Phys. Lett. A 227, 241 (1997).CrossRefGoogle Scholar
16.Vineyard., G.H., Radiat. Eff. 29, 245 (1976).CrossRefGoogle Scholar
17.de la Rubia, T. Diaz and Gilmer., G.H., Phys. Rev. Lett. 74, 2507 (1995).CrossRefGoogle Scholar