Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T18:28:07.026Z Has data issue: false hasContentIssue false

Observation of structural anisotropy in metallic glasses induced by mechanical deformation

Published online by Cambridge University Press:  03 March 2011

Wojtek Dmowski*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200
Takeshi Egami
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996-2200; and Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6376
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have investigated atomic structure of a Fe81B13Si4C2 metallic glass after mechanical creep deformation. We determined the structure function and pair density function resolved for azimuthal angle using x-ray scattering and a two-dimensional detector. The results are analyzed by the spherical harmonics expansion, and are compared to the often-used simple analysis of the anisotropic pair density function determined by measuring the structure function along two directions with respect to the stress. We observed uniaxial structural anisotropy in a sample deformed during creep experiment. The observed macroscopic shear strain is explained in terms of local bond anisotropy induced by deformation at elevated temperature. The bond anisotropy is a “memory” of this deformation after load was removed. We showed that use of sine-Fourier transformation to anisotropic glass results in systematic errors in the atomic pair distribution function.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Klement, K., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869 (1960).Google Scholar
2Inoue, A., Zhang, T., and Masumoto, T.: Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans., JIM 31, 177 (1990).CrossRefGoogle Scholar
3Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
4Lin, X.H., Johnson, W.L., and Rhim, W.K.: Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Mater. Trans. 38, 473 (1997).CrossRefGoogle Scholar
5Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
6Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
7Vaidyanathan, R., Dao, M., Ravichandran, G., and Suresh, S.: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49, 3781 (2001).Google Scholar
8Bian, Z., He, G., and Chen, G.L.: Microstructure and mechanical properties of as-cast Zr52.5Cu17.9Ni14.6 Al10Ti5 bulky glass alloy. Scripta Mater. 43, 1003 (2000).Google Scholar
9Egami, T.: Magnetic amorphous materials: Physics and technological applications. Rep. Prog. Phys. 47, 1601 (1984).Google Scholar
10Morrison, M.L., Buchanan, R.A., Peker, A., Peter, W.H., Horton, J.A., and Liaw, P.K.: Cyclic-anodic-polarization studies of a Zr41.2Ti13.8Ni10Cu12.5Be22.5 bulk metallic glass. Intermetallics 12, 1177 (2004).Google Scholar
11Kawashima, A., Habazaki, H., and Hashimoto, K.: Highly corrosionresistant Ni-based bulk amorphous alloys. Mater. Sci. Eng., A 304–306, 753 (2001).Google Scholar
12Saotome, Y., Hatori, T., Zhang, T., and Inoue, A.: Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5 amorphous alloy in supercooled liquid state. Mater. Sci. Eng., A 304–306, 716 (2001).Google Scholar
13Saotome, Y., Itoh, K., Zhang, T., and Inoue, A.: Superplastic nanoforming of Pd-based amorphous alloy. Scripta Mater. 44, 1541 (2001).CrossRefGoogle Scholar
14Nieh, T.G., Wadsworth, J., Liu, C.T., Ice, G.E., and Chung, K.S.: Extended plasticity in the supercooled liquid region of bulk metallic glasses. Mater. Trans. 42, 613 (2001).CrossRefGoogle Scholar
15Egami, T. and Billinge, S.J.L.: Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon Press, Amsterdam, 2003).CrossRefGoogle Scholar
16Qiu, X., Thompson, J.W., and Billinge, S.J.L.: PDFgetX2: A GUI-driven program to obtain the pair distribution function from x-ray powder diffraction data. J. Appl. Crystallogr. 37, 678 (2004).Google Scholar
17Peterson, P.F., Gutmann, M., Proffen, Th., and Billinge, S.J.L.: PDFgetN: A user-friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data. J. Appl. Crystallogr. 33, 1192 (2000).CrossRefGoogle Scholar
18Suzuki, Y., Haimovich, J., and Egami, T.: Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. Phys. Rev. B 35, 2162 (1987).CrossRefGoogle ScholarPubMed
19Egami, T., Dmowski, W., Kosmetatos, P., Boord, M., Tomida, T., Oikawa, E., and Inoue, A.: Deformation induced bond orientational order in metallic glass. J. Non-Cryst. Solids 192–193, 591 (1995).Google Scholar
20Chupas, P.J., Qiu, X., Hanson, J.C., Lee, P.L., Grey, C.P., and Billinge, S.J.L.: Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Crystallogr. 36, 1342 (2003).CrossRefGoogle Scholar
21Poulsen, H.F., Wert, J.A., Neuefeind, J., Honkimaki, V., and Daymond, M.: Measuring strain distributions in amorphous materials. Nat. Mater. 4, 33 (2005).Google Scholar
22Hufnagel, T.C., Ott, R.T., and Almer, J.: Structural aspects of elastic deformation of a metallic glass. Phys. Rev. B 73, 064204 (2006).CrossRefGoogle Scholar
23Ott, R.T., Kramer, M.J., Besser, M.F., and Sordelet, D.J.: High-energy measurements of structural anisotropy and excess free volume in a homogenously deformed Zr-based metallic glass. Acta Mater. 54, 2463 (2006).Google Scholar
24Hammersley, A.P.: FIT2D: An introduction and overview. ESRF Internal Report, ESRF97HA02T (1997).Google Scholar
25Hammersley, A.P., Svensson, S.O., and Thompson, A.: Calibration and correction of spatial distortions in 2D detector systems. Nucl. Instr. Meth. A346, 312 (1994).Google Scholar
26Cargill, G.S. III: Solid State Physics, Vol. 30, edited by Seitz, F. and Turnbull, D. (Academic Press, New York, 1975), p. 227.Google Scholar