Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T01:26:51.108Z Has data issue: false hasContentIssue false

Observation of Intergranular Films in BaB2O4-added BaTiO3 Ceramics

Published online by Cambridge University Press:  31 January 2011

Joon-Hyung Lee*
Affiliation:
Department of Inorganic Materials Engineering, Kyungpook National University, Taegu 702–701, Korea
Jeong-Joo Kim
Affiliation:
Department of Inorganic Materials Engineering, Kyungpook National University, Taegu 702–701, Korea
Haifeng Wang
Affiliation:
Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Sang-Hee Cho
Affiliation:
Department of Inorganic Materials Engineering, Kyungpook National University, Taegu 702–701, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Distribution characteristics of boundary phase in BaB2O4 added BaTiO3 ceramics were investigated with a focus on the curvature difference of solid–liquid interfaces at two-grain and triple junctions. High-resolution transmission electron microscopy revealed that the triple junction of solid grains showed the positive curvature of solid–liquid interface and consisted of the mixture of liquid phase and crystallized BaB2O4 phase. On the other hand, flat amorphous thin film of 2.5-nm thickness was observed at the two-grain junction. This kind of boundary phase distribution characteristic was explained by the solubility difference between two kinds of junctions of solid grains that had different curvature of solid–liquid interfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Saburi, O., J. Phys. Soc. Jpn. 14, 1157 (1959).CrossRefGoogle Scholar
2.Jonker, G.H., Mater. Res. Bull. 2, 401 (1967).CrossRefGoogle Scholar
3.Lee, J-H., Kim, S-H., and Cho, S-H., J. Am. Ceram. Soc. 78, 2845 (1995).CrossRefGoogle Scholar
4.Matsuo, Y., Fujimura, M., Sasaki, H., Nagase, K., and Hayakawa, S., Ceram. Bull. 47, 292 (1968).Google Scholar
5.Cheng, H.F., J. Appl. Phys. 66, 1382 (1989).CrossRefGoogle Scholar
6.Ravi, V. and Kutty, T.R.N, J. Am. Ceram. Soc. 75, 203 (1992).CrossRefGoogle Scholar
7.Park, S-J., Lee, J-H., and Cho, S-H., in Grain Boundaries and Interfacial Phenomena in Electronic Ceramics, edited by Levinson, L.M. and Hirano, S. (Ceram. Trans. 41, The American Ceramic Society, 1994), pp. 145–51.Google Scholar
8.Ho, I.C., J. Am. Ceram. Soc. 77, 829 (1994).CrossRefGoogle Scholar
9.Heo, Y-W., Lee, J-H., Kim, J-J., Kim, N-K. and Cho, S-H., J. Kor. Ceram. Soc. 33, 1038 (1996).Google Scholar
10.Park, H.H. and Yoon, D.N., Metall. Trans. A 16A, 923 (1985).CrossRefGoogle Scholar
11.Wray, P.J., Acta Metall. 24, 125 (1976).CrossRefGoogle Scholar
12.Lay, K.W., J. Am. Ceram. Soc. 51, 373 (1968).CrossRefGoogle Scholar
13.Clarke, D.R., J. Am. Ceram. Soc. 70, 15 (1987).CrossRefGoogle Scholar
14.Kleebe, H-J., Hoffmann, M.J., and Rühle, M., Zeitschrift für Metallkunde 83, 610 (1992).Google Scholar
15.Chiang, Y-M., Silverman, L.A., French, R.H., and Cannon, R.M., J. Am. Ceram. Soc. 77, 1143 (1994).CrossRefGoogle Scholar
16. Phase Diagrams for Ceramists 1975 Supplement, Vol. 3, Fig. 4545, edited and published by The American Ceramic Society (1975).Google Scholar
17.Clarke, D.R., Shaw, T.M., Philipse, A.P., and Horn, R.G., J. Am. Ceram. Soc. 76, 1201 (1993).CrossRefGoogle Scholar
18.Raj, R., in Tailoring of Mechanical Properties of Si3N4 Ceramics, edited by Hoffmann, M.J., and Petzow, G. (NATO Asi Series E, Kluwer Academic Publishers, Boston, MA, 1994), Vol. 276, pp. 201206.CrossRefGoogle Scholar
19.Raj, R., J. Am. Ceram. Soc. 64, 245 (1981).CrossRefGoogle Scholar
20.Raj, R. and Lange, F.F., Acta Metall. 29, 1993 (1981).CrossRefGoogle Scholar
21.Kessler, H., Kleebe, H-J., Cannon, R.M., and Pompe, W., Acta Metall. Mater. 40, 2233 (1992).CrossRefGoogle Scholar
22.Chadwick, M.M., Jupp, R.S., and Wilkinson, D.S., J. Am. Ceram. Soc. 76, 385 (1993).CrossRefGoogle Scholar
23.Ackler, H.D., Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, (1997).Google Scholar
24.Chiang, Y-M., Silverman, L.A., French, R.H., and Cannon, R.M., J. Am. Ceram. Soc. 77, 1143 (1994).CrossRefGoogle Scholar
25.Gu, H., Pan, X., Cannon, R.M., and Rühle, M., J. Am. Ceram. Soc. 81, 3125 (1998).CrossRefGoogle Scholar
26.Brydson, R., Chen, S-C., Riley, F.L., Milne, S.J., Pan, X., and Rühle, M., J. Am. Ceram. Soc. 81, 369 (1998).CrossRefGoogle Scholar
27.Greenwood, G.W., Acta Metall. 4, 243 (1956).CrossRefGoogle Scholar
28.Lifshitz, J.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
29.Ardell, A.J., Acta Metall. 20, 61, (1972).CrossRefGoogle Scholar
30.Christian, J.W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, United Kingdom, 1981), p. 431.Google Scholar
31.Chiang, Y-M., Birnie, D.P. III, and Kingery, W.D., Physical Ceramics, (Wiley & Sons, New York, 1997), p. 434.Google Scholar
32.Uhlmann, D.R. and Kreidl, N.J., Glass Forming Systems, Glass Science and Technology Vol. 1 (Academic Press, New York, 1983), p. 8.Google Scholar