Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T09:38:27.834Z Has data issue: false hasContentIssue false

Nucleation and growth rate influence on microstructure and critical currents of TFA-YBa2Cu3O7 under low-pressure conditions

Published online by Cambridge University Press:  31 January 2011

H. Chen
Affiliation:
Applied Superconductivity Research Center, Department of Physics, Tsinghua University, 100084 Beijing, China; and Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A. Barcelona, 08193 Bellaterra, Spain
K. Zalamova
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A. Barcelona, 08193 Bellaterra, Spain
A. Pomar
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A. Barcelona, 08193 Bellaterra, Spain
X. Granados
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A. Barcelona, 08193 Bellaterra, Spain
T. Puig
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A. Barcelona, 08193 Bellaterra, Spain
X. Obradors*
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus U.A. Barcelona, 08193 Bellaterra, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effects of variable conversion parameters on the microstructure and critical currents of TFA-derived YBa2Cu3O7 (YBCO) films annealed under low-pressure conditions were investigated, accompanied by the analysis of their relationship with the nucleation process and the growth rate. It is found that non-c-axis oriented YBCO grains are formed under high supersaturation conditions, i.e., by increasing oxygen pressure, water pressure, or temperature. The optimal PH2O–PO2 window for preparation of completely c-axis oriented YBCO films expands as the total pressure rises from 50 to 100 mbar due to the decrease of supersaturation at enhanced total pressure; the corresponding maximum growth rate is only slightly increased up to 0.6 nm/s. Additionally, it is shown that the gas flow needs to be high enough to avoid random nucleation of YBCO grains. A single gas-flow–water-pressure diagram, showing simultaneously the film-growth rate, allows visualizing the cross-linked influence of processing parameters to achieve c-axis oriented YBCO films with Jc above 1 MA/cm2 in one single growth step.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Foltyn, S.R., Civale, L., Macmanus-Driscoll, J.L., Jia, Q.X., Maiorov, B., Wang, H., Maley, M.: Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631 (2007)Google Scholar
2.Larbalestier, D., Burevich, A., Feldmann, D.M., Polyanskii, A.: High-T c superconducting materials for electric power applications. Nature 414, 368 (2001)CrossRefGoogle ScholarPubMed
3.Paranthaman, M.P., Izumi, T.: High-performance YBCO-coated superconductor wires. MRS Bull. 29, 533 (2004)CrossRefGoogle Scholar
4.Gupta, A., Jagannathan, R., Cooper, E.I., Giess, E.A., Landman, J.I., Hussey, B.W.: Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 52, 2077 (1988)CrossRefGoogle Scholar
5.Smith, J.A., Cima, M.J., Sonnenberg, N.: High critical current density thick MOD-derived YBCO films. IEEE Trans. Appl. Supercond. 9, 1531 (1999)CrossRefGoogle Scholar
6.Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Piñol, S., Mestres, N., Castaño, O., Coll, M., Cavallaro, A., Palau, A., Gázquez, J., González, J.C., Gutiérrez, J., Romà, N., Ricart, S., Moretó, J.M., Rossell, M.D., van Tendeloo, G.: Chemical solution deposition: A path towards low cost coated conductors. Supercond. Sci. Technol. 17, 1055 (2004)CrossRefGoogle Scholar
7.Puig, T., González, J.C., Pomar, A., Mestres, N., Castano, O., Coll, M., Gázquez, J., Sandiumenge, F., Piñol, S., Obradors, X.: The influence of growth conditions on the microstructure and critical currents of TFA-MOD YBa2Cu3O7 films. Supercond. Sci. Technol. 18, 1141 (2005)CrossRefGoogle Scholar
8.Gázquez, J., Sandiumenge, F., Coll, M., Pomar, A., Mestres, N., Puig, T., Obradors, X., Kihn, Y., Casanove, M.J., Ballesteros, C.: Precursor evolution and nucleation mechanism of YBa2Cu3Ox films by TFA metal-organic decomposition. Chem. Mater. 18, 6211 (2006)CrossRefGoogle Scholar
9.Zalamova, K., Pomar, A., Palau, A., Puig, T., Obradors, X.: Intermediate phase evolution in YBCO thin films grown by the TFA process. Supercond. Sci. Technol. 23, 014012 (2010)CrossRefGoogle Scholar
10.Zalamova, K., Romà, N., Pomar, A., Morlens, S., Puig, T., Gázquez, J., Carrillo, A.E., Sandiumenge, F., Ricart, S., Mestres, N., Obradors, X.: Smooth stress relief of trifluoroacetate metal-organic solutions for YBa2Cu3O7 film growth. Chem. Mater. 18, 5897 (2006)CrossRefGoogle Scholar
11.Llordés, A., Zalamova, K., Ricart, S., Palau, A., Pomar, A., Puig, T., Hardy, A., Van Bael, M.K., Obradors, X.: Evolution of metal-trifluoroacetate precursors in the thermal decomposition toward high-performance YBa2Cu3O7 superconducting films. Chem. Mater. 22, (5)1686 (2010)Google Scholar
12.Chen, H., Zalamova, K., Pomar, A., Granados, X., Puig, T., Obradors, X.: Growth rate control and solid-gas modeling of TFA-YBa2Cu3O7 thin film processing. Supercond. Sci. Technol. 23, 034005 (2010)Google Scholar
13.Wu, L., Solovyov, V.F., Wiesmann, H.J., Zhu, Y., Suenaga, M.: Mechanisms for hetero-epitaxial nucleation of YBa2Cu3O˜6.1 at the buried precursor/SrTiO3 interface in the postdeposition reaction process. Appl. Phys. Lett. 80, 419 (2002)CrossRefGoogle Scholar
14.Wong-Ng, W., Levin, I., Cook, L.P.: Nature of transient BaF2-related phases in the “BaF2” processing of Ba2YCu3O7-x superconductors. Appl. Phys. Lett. 88, 102507 (2006)CrossRefGoogle Scholar
15.Yoshizumi, M., Seleznev, I., Cima, M.J.: Reactions of oxyfluoride precursors for the preparation of barium yttrium cuprate films. Physica C 403, 191 (2004)CrossRefGoogle Scholar
16.Wesolowski, D.E., Yoshizumi, M., Cima, M.J.: Trajectory-property relationship in MOD-derived YBCO films. Physica C 450, 76 (2006)CrossRefGoogle Scholar
17.Solovyov, V.F., Wiesmann, H.J., Suenaga, M.: Growth rate limiting mechanisms of YBa2Cu3O7 films manufactured by ex situ processing. Physica C 353, 14 (2001)CrossRefGoogle Scholar
18.Honjo, T., Nakamura, Y., Teranishi, R., Tokunaga, Y., Fuji, H., Shibata, J., Asada, S., Izumi, T., Shiohara, Y., Iijima, Y., Saitoh, T., Kaneko, A., Murata, K.: Fabrication and growth mechanism of YBCO coated conductors by TFA-MOD process. Physica C 392–396, 873 (2003)CrossRefGoogle Scholar
19.Yoo, J., Leonard, K.J., Lee, D.F., Hsu, H.S., Heatherly, L., List, F.A., Rutter, N.A., Goyal, A., Paranthaman, M., Kroeger, D.M.: Effects of conversion parameters on the transport properties of YBCO films in the BaF2 ex situ process. J. Mater. Res. 19, 1281 (2004)CrossRefGoogle Scholar
20.Zhang, Y., Feenstra, R., Thompson, J.R., Gapud, A.A., Aytug, T., Martin, P.M., Christen, D.K.: High critical current density YBa2Cu3O7-δ thin films fabricated by ex situ processing at low pressures. Supercond. Sci. Technol. 17, 1154 (2004)CrossRefGoogle Scholar
21.Suenaga, M.: BaF2 processes for YBa2Cu3O7 conductors: Promises and challenges. Physica C 378–381, 1045 (2002)CrossRefGoogle Scholar
22.Teranishi, R., Honjo, T., Tokunaga, Y., Fuji, H., Matsuda, J., Izumi, T., Yajima, A., Shiohara, Y.: Fabrication of YBCO film by TFA-MOD process at low-pressure atmosphere. Physica C 412–414, 920 (2004)CrossRefGoogle Scholar
23.List, F.A., Clem, P.G., Heatherly, L., Dawley, J.T., Leonard, K.J., Lee, D.F., Goyal, A.: Low-pressure conversion studies for YBCO precursors derived by PVD and MOD methods. IEEE Trans. Appl. Supercond. 15, 2656 (2005)CrossRefGoogle Scholar
24.Solovyov, V.F., Wiesmann, H.J., Li, Q., Welch, D.O., Suenaga, M.: Three- and four-μm-thick YBa2Cu3O7 layers with high critical-current densities on flexible metallic substrates by the BaF2 process. J. Appl. Phys. 99, 013902 (2006)CrossRefGoogle Scholar
25.Feenstra, R., List, F.A., Li, X., Rupich, M.W., Miller, D.J., Maroni, V.A., Zhang, Y., Thomson, J.R., Christen, D.K.: A modular ex situ conversion process for thick MOD-Fluoride RBCO precursors. IEEE Trans. Appl. Supercond. 19, 3131 (2009)CrossRefGoogle Scholar
26.Rupich, M.W., Li, X., Thieme, C., Sathyamurthy, S., Fleshler, S., Tucker, D., Thompson, E., Schreiber, J., Lynch, J., Buczek, D., DeMoranville, K., Inch, J., Cedrone, P., Slack, J.: Advances in second generation high temperature superconducting wire manufacturing and R&D at American Superconductor Corporation. Supercond. Sci. Technol. 23, 014015 (2010)CrossRefGoogle Scholar
27.Roma, N., Morlens, S., Ricart, S., Zalamova, K., Moreto, J.M., Pomar, A., Puig, T., Obradors, X.: Acid anhydrides: A simple route to highly pure organometallic solutions for superconducting films. Supercond. Sci. Technol. 19, 521 (2006)CrossRefGoogle Scholar
28.Sanchez, A., Navau, C.: Magnetic properties of finite superconducting cylinders. I. Uniform applied field. Phys. Rev. B 64, 214506 (2001)CrossRefGoogle Scholar
29.Miletto Granozio, F., Salluzzo, M., Scotti di Uccio, U., Maggio-Aprile, I., Fischer, Ø.: Competition between a-axis and c-axis growth in superconducting RBa2Cu3O7-x thin films. Phys. Rev. B 61, 756 (2000)CrossRefGoogle Scholar
30.Miletto Granozio, F., Scotti di Uccio, U.: Simple model for nucleation of (001) and (100) oriented grains in YBCO films. J. Cryst. Growth 174, 409 (1997)CrossRefGoogle Scholar
31.Ichino, Y., Sudoh, K., Miyachi, K., Yoshida, Y., Takai, Y.: Orientation mechanism of REBa2Cu3Oy (RE = Nd, Sm, Gd, Y, Yb) thin films prepared by pulsed laser deposition. IEEE Trans. Appl. Supercond. 13, 2735 (2003)CrossRefGoogle Scholar
32.Jeschke, U., Schneider, R., Ulmer, G., Linker, G.: Influence of the substrate material on the growth direction of YBaCuO thin films. Physica C 243, 243 (1995)CrossRefGoogle Scholar
33.Schwartz, R.W., Voigt, J.A., Tuttle, B.A., Payne, D.A., Reichert, T.L., DaSalla, R.S.: Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films. J. Mater. Res. 12, 444 (1997)CrossRefGoogle Scholar
34.Feenstra, R., Lindemer, T.B., Budai, J.D., Galloway, M.D.: Effect of oxygen pressure on the synthesis of YBa2Cu3O7-x thin films by post-deposition annealing. J. Appl. Phys. 69, 6569 (1991)CrossRefGoogle Scholar
35.Bormann, B., Nolting, J.: Critical oxygen partial pressure for the “in situ” preparation of high T c superconducting thin films. Physica C 162–164, 81 (1989)CrossRefGoogle Scholar
36.Solovyov, V.F., Wiesmann, H.J., Suenaga, M.: Nucleation of YBa2Cu3O7-x on buffered metallic substrates in thick precursor films made by the BaF2 process. Supercond. Sci. Technol. 18, 239 (2005)CrossRefGoogle Scholar
37.Hilgenkamp, H., Mannhart, J.: Grain boundaries in high-T c superconductors. Rev. Mod. Phys. 74, 485 (2002)Google Scholar
38.Solovyov, V.F., Wiesmann, H.J., Suenaga, M.: The effects of HF partial pressure and pressure gradients on YBCO growth in the BaF2 process, S4I-1 2001 International Workshop on Superconductivity (ISTEC and MRS, Honolulu, HI June 24–27 2001)225 Google Scholar