Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T01:26:12.875Z Has data issue: false hasContentIssue false

Nucleation and growth of diamond on carbon-implanted single crystal copper surfaces

Published online by Cambridge University Press:  31 January 2011

T.P. Ong*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Fulin Xiong
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
R.P.H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
C.W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a)Present address: Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, M/S 303-308, Pasadena, California 91109-8099.
Get access

Abstract

The nucleation and growth of diamond crystals on single crystal copper surfaces has been studied. Microwave plasma enhanced chemical vapor deposition (MPECVD) was used for diamond nucleation and growth. Prior to diamond nucleation, the single crystal copper surface is modified by carbon ion implantation at an elevated temperature (∊820 °C). This procedure leads to the formation of a graphite film on the copper surface, resulting in an enhancement of diamond crystallite nucleation. A simple lattice model has been constructed to describe the mechanism of diamond nucleation on graphite as 〈111〉diamond parallel to 〈0001〉graphite and 〈110〉diamond parallel to 〈11$\overline 1$0〉graphite. This leads to a good understanding of diamond growth on carbon-implanted copper surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Geis, M.W., Efremow, N.N., and Rathman, D.D., J. Vac. Sci. Technol. A6, 1953 (1988).CrossRefGoogle Scholar
2.Nakazawa, H., Nakazawa, Y., Kamo, M., and Osumi, K., Thin Solid Films 151, 199 (1987).CrossRefGoogle Scholar
3.Field, J. E., in The Properties of Diamond, edited by Field, J. E. (Academic Press, New York, 1979), p. 281.Google Scholar
4.Belton, D.N. and Schmieg, S.J., J. Appl. Phys. 66, 4223 (1989).CrossRefGoogle Scholar
5.Banarjee, B.C., Hirth, T.J., and Walker, P.L., Jr., Nature 192, 450 (1961).CrossRefGoogle Scholar
6.Trimm, D. L., in Pyrolysis: Theory and Industrial Practice, edited by Albright, L. F., Crynes, B. L., and Corcoran, W. H. (Academic Press, New York, 1983), p. 203.Google Scholar
7.Koizumi, S., Murakami, T., Inuzuka, T., and Suzuki, K., Appl. Phys. Lett. 57, 563 (1990).CrossRefGoogle Scholar
8.Richter, R., Smith, J. R., and Gay, J. G., in The Structure of Surfaces, edited by van Hove, M. A. and Tong, S. Y. (Springer-Verlag, New York, 1985), p. 35.CrossRefGoogle Scholar
9.Palmberg, P. W., in The Structure and Chemistry of Solid Surfaces, edited by Somorjai, G. A. (Wiley, New York, 1969), p. 29.1.Google Scholar
10.Karu, A.E. and Beer, M., J. Appl. Phys. 37, 2179 (1966).CrossRefGoogle Scholar
11.Derbyshire, F.J., Presland, A.E.B., and Trimm, D.L., Carbon 13, 111 (1975).CrossRefGoogle Scholar
12.Presland, A.E.B. and Walker, P.L., Jr., Carbon 7, 1 (1969).CrossRefGoogle Scholar
13.Irving, S.M. and Walker, P.L., Jr., Carbon 5, 399 (1967).CrossRefGoogle Scholar
14.Oya, A. and Otani, S., Carbon 17, 131 (1979).CrossRefGoogle Scholar
15.Bever, M.B. and Floe, C.F., Trans. AIME 166, 128 (1946).Google Scholar
16.Lee, S.T., Chen, S., Braunstein, G., Feng, X., Bello, I., and Lau, W.M., Appl. Phys. Lett. 59, 785 (1991)CrossRefGoogle Scholar
17.Prins, J. F. and Gaigher, H. L., Proc. 2nd Int. Conf. on New Diamond Science and Technology, edited by, Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Materials Research Society, Pittsburgh, PA, 1991), p. 561.Google Scholar
18.Nelson, J. B. and Riley, D. P., Proc. Phys. Soc. 57, 477 (1945).CrossRefGoogle Scholar
19.Hennig, G. R., J. Chem. Phys. 40, 2877 (1964).CrossRefGoogle Scholar
20.Thomas, J. M., in Chemistry and Physics of Carbon, edited by Walker, P.L., Jr. (Dekker, New York, 1965), Vol. 1, p. 121, and references therein.Google Scholar
21.Evans, E. L., Griffiths, R.J. M., and Thomas, J.M., Science 171, 174 (1971).CrossRefGoogle Scholar
22.Olander, D. R., Jones, R., Schwarz, J. A., and Siekhaus, W., J. Chem. Phys. 57, 421 (1972).CrossRefGoogle Scholar
23.Tomita, A. and Tamai, Y., J. Chem. Phys. 78, 2254 (1974).CrossRefGoogle Scholar
24.Yang, R.T. and Wong, C., J. Chem. Phys. 75, 4471 (1981).CrossRefGoogle Scholar
25.McKee, D. W., in Chemistry and Physics of Carbon, edited by Walker, P. L., Jr. and Thrower, P. A. (Dekker, New York, 1981), Vol. 16, p. 1, and references therein.Google Scholar
26.Grisdale, R. O., J. Appl. Phys. 24, 1082 (1953).CrossRefGoogle Scholar
27.Balooch, M. and Olander, D. R., J. Chem. Phys. 63, 4772 (1975).CrossRefGoogle Scholar
28.Feates, F. S., Carbon 6, 949 (1968).CrossRefGoogle Scholar
29.Vandentop, G. J., Kawasaki, M., Nix, R. M., Brown, I. G., Salmeron, M., and Somorjai, G.A., Phys. Rev. B 41, 3200 (1990).CrossRefGoogle Scholar
30.Kline, L. E., Partlow, W. D., and Bies, W. E., J. Appl. Phys. 65, 70 (1989).CrossRefGoogle Scholar
31.Toyoda, H., Kojima, H., and Sugai, H., Appl. Phys. Lett. 54, 1507 (1989).CrossRefGoogle Scholar
32.Vandentop, G. J., Nascente, P. A. P., Kawasaki, M., Ogletree, D. F., Somorjai, G. A., and Salmeron, M., J. Vac. Sci. Technol. A9, 2273 (1991).CrossRefGoogle Scholar
33.Zielke, C. W. and Gorin, E., Ind. Eng. Chem. 47, 820 (1955).CrossRefGoogle Scholar
34.Coulson, C. A., Proc. of the 4th Conf. on Carbon (Pergamon Press, New York, 1960), p. 215.Google Scholar
35.Wheeler, E.J. and Lewis, D., Mater. Res. Bull. X, 687 (1975).CrossRefGoogle Scholar
36.Zhu, W., Randall, C.A., Badzian, A.R., and Messier, R., J. Vac. Sci. Technol. A7, 2315 (1989).CrossRefGoogle Scholar