Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T06:07:38.491Z Has data issue: false hasContentIssue false

Nucleation and growth of Al2O3/metal composites by oxidation of aluminum alloys

Published online by Cambridge University Press:  31 January 2011

O. Salas
Affiliation:
Graduate Research Assistant, University of California, Santa Barbara, California 93106
H. Ni
Affiliation:
Assistant Specialist, University of California, Santa Barbara, California 93106
V. Jayaram
Affiliation:
Assistant Professor, Indian Institute of Science, Bangalore, India
K.C. Vlach
Affiliation:
Assistant Research Engineer, University of California, Santa Barbara, California 93106
C.G. Levi
Affiliation:
Associate Professor of Materials and Mechanical Engineering, University of California, Santa Barbara, California 93106
R. Mehrabian
Affiliation:
President, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Get access

Abstract

The nucleation and growth mechanisms during high temperature oxidation of liquid Al−3% Mg and Al−3% Mg−3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Newkirk, M.S., Urquhart, A.W., Zwicker, H. R., and Breval, E., J. Mater. Res. 1, 8189 (1986).CrossRefGoogle Scholar
2.Newkirk, M. S., Lesher, H. D., White, D. R., Kennedy, C. R., Urquhart, A. W., and Claar, T. D., Ceram. Eng. Sci. Proc. 8, 879885 (1987).CrossRefGoogle Scholar
3.Thouless, M. D. and Evans, A. G., Acta Metall. 36 (3), 517522 (1988).CrossRefGoogle Scholar
4.Vlach, K. C., Salas, O., Ni, H., Jayaram, V., Levi, C. G., and Mehrabian, R., J. Mater. Res. 6, 19821995 (1991).CrossRefGoogle Scholar
5. The microscope experimental setup was initially developed by Urquhart, A. W. and A. S. Nagelberg of Lanxide Co. (unpublished research).Google Scholar
6.Nagelberg, A. S., Solid State Ionics 32/33, 783788 (1989).CrossRefGoogle Scholar
7.Aghajanian, M. K., MacMillan, N. H., Kennedy, C. R., Luszcz, S. J., and Roy, R., J. Mater. Sci. 24, 658670 (1989).CrossRefGoogle Scholar
8.Preston, G. D. and Bircumshaw, L. L., Philos. Mag. 20, 706720 (1935).CrossRefGoogle Scholar
9.Dobinski, S. and Niesluchowski, M., Nature 144, 510511 (1939).CrossRefGoogle Scholar
10.Smeltzer, W. W., J. Electrochem. Soc. 105, 6771 (1958).CrossRefGoogle Scholar
11.Cochran, C. N. and Sleppy, W. C., J. Electrochem. Soc. 108, 322327 (1961).CrossRefGoogle Scholar
12.Hine, R. A. and Guminski, R. D., J. Inst. Met. 89, 417422 (1961).Google Scholar
13.Lea, C. and Ball, J., Appl. Surf. Sci. 17, 344362 (1984).CrossRefGoogle Scholar
14.Rönnhult, T., Rilby, U., and Olefjord, I., Mater. Sci. Eng. 42, 329336 (1980).CrossRefGoogle Scholar
15.Belitskus, D. L., Oxid. Met. 3, 313317 (1971).CrossRefGoogle Scholar
16.Belitskus, D.L., Oxid. Met. 8, 303307 (1974).CrossRefGoogle Scholar
17.Stucki, F., Erbudak, M., and Kostorz, G., Appl. Surf. Sci. 27, 394400 (1987).CrossRefGoogle Scholar
18.Drouzy, M. and Mascre, C., Metall. Rev. 3, 2546 (1969).CrossRefGoogle Scholar
19.Thiele, W., Aluminium 38, 705715, 780–786 (1962).Google Scholar
20.Balicki, S., Prace Inst. Hutnic. 10, 208213 (1958).Google Scholar
21.Balicki, S. and Leitl, J., Prace Inst. Hutnic. 11, 7174 (1959).Google Scholar
22.Mal'tsev, M. V., Chistyakov, Yu. D., and Tsypin, M. I., Izv. Akad. Nauk SSSR, Ser. Fiz. (English transl.) 20, 747750 (1956).Google Scholar
23.Drouzy, M. and Fontaine, D., Rev. de Metall. 775781 (1970).Google Scholar
24.Drouzy, M. and Richard, M., Fonderie 29, 121128 (1974).Google Scholar
25.Haginoya, I. and Fukusako, T., J. Jpn. Inst. Light Met. 24, 364 (1974), republished in English in Trans. Jpn. Inst. Met. 24, 613–619 (1983).CrossRefGoogle Scholar
26.Cochran, C. N., Belitskus, D. L., and Kinosz, D. L., Metall. Trans. B 8B, 323332 (1977).CrossRefGoogle Scholar
27.Freti, S., Bornand, J.D., and Buxmann, K., Light Metal Age 40 (5–6), 12, 1516 (1982).Google Scholar
28.Radin, A. Ya., Svoistva Rasplavl. Met., Tr. Soveshch. Teor. Liteinykh Protessov, 16th, 116–122 (1972); Chemical Abstracts 82, 90567 (1975).Google Scholar
29.Kahl, W. and Fromm, E., Metall. Trans. B 16B, 4751 (1985).CrossRefGoogle Scholar
30.Tiwari, B. L., Metall. Trans. A 18A, 16451651 (1987).CrossRefGoogle Scholar
31.Murray, J. L. and McAlister, A. J., Bull. Alloy Phase Diagrams 5, 7484, 90–91 (1984).CrossRefGoogle Scholar
32.Robie, R. A., Hemingway, B. S., and Fisher, J. R., U. S. Geol. Survey Bull., 1452 (1979).Google Scholar
33.Carter, R. E., J. Am. Ceram. Soc. 44 (3), 116 (1961).CrossRefGoogle Scholar
34.Schmalzried, H. and Laqua, W., Oxid. Met. 15 (3/4), 339353 (1981).CrossRefGoogle Scholar
35.Vieira, J. M. and Brook, R. J., in Advanced Ceramics, edited by Kingery, W. D. (Am. Ceram. Soc., Columbus, OH, 1984), Vol. 10, pp. 438463.Google Scholar
36.Weirauch, D. A., J. Mater. Res. 3, 729739 (1988).CrossRefGoogle Scholar
37.Rao, Y. K. and Belton, G. R., in Chemical Metallurgy—A Tribute to Carl Wagner, edited by Gokcen, N. A. (TMS-AIME, Warrendale, PA, 1981), pp. 7596.Google Scholar
38.Nayeb-Hashemi, A. A. and Clark, J. B., Bull. Alloy Phase Diagrams 5, 584592, 637–638 (1984).CrossRefGoogle Scholar
39.Kuznetsov, V. G. and Makarov, E. S., Compt. Rend. Acad. Sci. URSS 23, 245249 (1939).Google Scholar
40.Badaeva, T. A., Doklady Akad. Nauk SSSR 64, 533536 (1949).Google Scholar
41.Metals Handbook, 8th ed. (ASM, Metals Park, OH, 1973), Vol. 8, pp. 396397.Google Scholar