Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T09:21:01.374Z Has data issue: false hasContentIssue false

Novel understanding of the YBa2Cu3O7–x thin film growth

Published online by Cambridge University Press:  31 January 2011

D. X. Huang*
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 2–4–1 Mutsuno, Atsuta-ku, Nagoya 456–8587, Japan
Y. Nakamura
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 2–4–1 Mutsuno, Atsuta-ku, Nagoya 456–8587, Japan
Y. Yamada
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 2–4–1 Mutsuno, Atsuta-ku, Nagoya 456–8587, Japan
I. Hirabayshi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center (ISTEC), 2–4–1 Mutsuno, Atsuta-ku, Nagoya 456–8587, Japan
*
a) Address all correspondence to this author. E-mail: [email protected]
Get access

Abstract

By combining the cross-sectional observation of the randomly oriented film areas and the analyses of the film microstructural influence by the substrate-surface morphology, we achieved a novel understanding of the YBa2Cu3O7–x (YBCO) thin film growth process, which leads to an explanation of different microstructures formed in YBCO thin films. Selective and competitive growth of YBa2Cu3O7–x and Ba–Cu–O/Cu–O was found to occur in the whole film growth process depending on the local surface roughness in which the interfacial energy played a controlling role.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gervais, A. and Keller, D., Physica C 246, 29 (1995).CrossRefGoogle Scholar
2.Chen, L., Piazza, T.W., Schmidt, B.E., Kelsey, J.E., Kaloyeros, A.E., Hazelton, D.W., Walker, M.S., Luo, L., Dye, R.C., Maggiore, C.J., Wilkins, D.J., and Knorr, D.B., J. Appl. Phys. 73, 7563 (1993).CrossRefGoogle Scholar
3.Hwang, D.M., Ravi, T.S., Ramesh, R., Chan, S.W., Chen, C.Y., Nazar, L., Wu, X.D., Inam, A., and Venkatesan, T., Appl. Phys. Lett. 57, 1690 (1990).CrossRefGoogle Scholar
4.Wen, J.G., Morishita, T., Koshizuka, N., Traeholt, C., and Zandbergen, H.W., Appl. Phys. Lett. 66, 1830 (1995).CrossRefGoogle Scholar
5.Budai, J.D., Young, R.T., and Chao, B.S., Appl. Phys. Lett. 62, 1836 (1993).CrossRefGoogle Scholar
6.Haage, T., Zegenhagen, J., Habermeier, H-U., and Cardona, M., Phys. Rev. Lett. 80, 4225 (1998).CrossRefGoogle Scholar
7.Huang, D.X., Yamada, Y., and Hirabayashi, I., Physica C 355, 194 (2001).CrossRefGoogle Scholar
8.Granozio, F.M. and Uccio, U. Scotti di, J. Alloys Compd. 251, 56 (1997).CrossRefGoogle Scholar
9.Sun, B.N., Hartman, P., Woensdregt, C.F., and Schemid, H., J. Cryst. Growth 100, 605 (1990).CrossRefGoogle Scholar
10.Zhang, X.F., J. Mater. Res. 14, 1204 (1999).CrossRefGoogle Scholar
11.Volmer, M. and Weber, A., Z. Phys. Chem. 119, 277 (1925).Google Scholar