Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T23:24:51.417Z Has data issue: false hasContentIssue false

A novel two-step preparation of spinel LiMn2O4 nanowires and its electrochemical performance charaterization

Published online by Cambridge University Press:  01 June 2012

Hu Zhao
Affiliation:
College of Materials Science and Opto-Electronic Technology, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Dongfeng Chen
Affiliation:
Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
Meng Yan
Affiliation:
College of Materials Science and Opto-Electronic Technology, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Jie Peng
Affiliation:
Experimental Physics Center, Institute of High Energy Physics Chinese Academy of Science, Beijing 100049, China
Mei Mei Wu
Affiliation:
Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
Xiao Ling Xiao*
Affiliation:
College of Materials Science and Opto-Electronic Technology, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Zhong-Bo Hu*
Affiliation:
College of Materials Science and Opto-Electronic Technology, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

LiMn2O4 nanowires have been synthesized by a two-step approach. γ-MnOOH nanowires are firstly synthesized by hydrothermal method and after further sintering with LiOH at 750 °C for about 3 h, the wire-like LiMn2O4 can be obtained. The structure of the final product is characterized by x-ray diffraction using Rietveld refinement. Its electrochemical performance is investigated by galvanostatic tests. The as-prepared LiMn2O4 nanowires display excellent cyclability. The LiMn2O4 nanowires with good cycle stability may be beneficial from the structural stability of LiMn2O4 crystal cell and one-dimensional nanostructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ozawa, K.: Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes - the LiCoO2/C system. Solid State Ionics 69, 212 (1994).CrossRefGoogle Scholar
2.Tarascon, J.M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).CrossRefGoogle ScholarPubMed
3.Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).CrossRefGoogle ScholarPubMed
4.Goodenough, J.B. and Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).CrossRefGoogle Scholar
5.Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., and Van Schalkwijk, W.: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).CrossRefGoogle ScholarPubMed
6.Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008).CrossRefGoogle ScholarPubMed
7.Xu, J.Q., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J.W., and Liang, B.: A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512 (2008).CrossRefGoogle Scholar
8.Etacheri, V., Marom, R., Elazari, R., Salitra, G., and Aurbach, D.: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4, 3243 (2011).CrossRefGoogle Scholar
9.Antolini, E.: LiCoO2: Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170, 159 (2004).CrossRefGoogle Scholar
10.Ying, J.R., Jiang, C.Y., and Wan, C.R.: Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. J. Power Sources 129, 264 (2004).CrossRefGoogle Scholar
11.Amatucci, G. and Tarascon, J.M.: Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries. J. Electrochem. Soc. 149, K31 (2002).CrossRefGoogle Scholar
12.Bao, S.J., Zhou, W.H., Liang, Y.Y., He, B.L., and Li, H.L.: Enhancement of the electrochemical properties of LiMn2O4 through chemical substitution. Mater. Chem. Phys. 95, 188 (2006).CrossRefGoogle Scholar
13.Yi, T.F., Zhu, Y.R., Zhu, X.D., Shu, J., Yue, C.B., and Zhou, A.N.: A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15, 779 (2009).CrossRefGoogle Scholar
14.Yue, H.J., Huang, X.K., Lv, D.P., and Yang, Y.: Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability. Electrochim. Acta 54, 5363 (2009).CrossRefGoogle Scholar
15.Luo, J.Y. and Xia, Y.Y.: Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 17, 3877 (2007).CrossRefGoogle Scholar
16.Qu, Q.T., Fu, L.J., Zhan, X.Y., Samuelis, D., Maier, J., Li, L., Tian, S., Li, Z.H., and Wu, Y.P.: Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ. Sci. 4, 3985 (2011).CrossRefGoogle Scholar
17.Manjunatha, H., Suresh, G.S., and Venkatesha, T.V.: Electrode materials for aqueous rechargeable lithium batteries. J. Solid State Electrochem. 15, 431 (2011).CrossRefGoogle Scholar
18.Manthiram, A., Murugan, A.V., Sarkar, A., and Muraliganth, T.: Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 1, 621 (2008).CrossRefGoogle Scholar
19.Su, L.W., Jing, Y., and Zhou, Z.: Li ion battery materials with core-shell nanostructures. Nanoscale 3, 3967 (2011).CrossRefGoogle ScholarPubMed
20.Zhao, P., Wang, D.S., Lu, J., Nan, C.Y., Xiao, X.L., and Li, Y.D.: Synthesis of LiV3O8 nanorods and shape-dependent electrochemical performance. J. Mater. Res. 26, 424 (2011).CrossRefGoogle Scholar
21.Lu, C.Z. and Fey, G.T.K.: Nanocrystalline and long cycling LiMn2O4 cathode material derived by a solution combustion method for lithium ion batteries. J. Phys. Chem. Solids 67, 756 (2006).CrossRefGoogle Scholar
22.Hwang, B.J., Santhanam, R., and Liu, D.G.: Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. J. Power Sources 9798, 443 (2001).CrossRefGoogle Scholar
23.Hwang, B.J., Santhanam, R., and Liu, D.G.: Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol-gel method at low temperature. J. Power Sources 101, 86 (2001).CrossRefGoogle Scholar
24.Wang, X.N., Chen, X.Y., Gao, L.H., Zheng, H.G., Ji, M.R., Shen, T., and Zhang, Z.D.: Citric acid-assisted sol-gel synthesis of nanocrystalline LiMn2O4 spinel as cathode material. J. Cryst. Growth 256, 123 (2003).CrossRefGoogle Scholar
25.Thirunakaran, R., Sivashanmugam, A., Gopukumar, S., Dunnill, C.W., and Gregory, D.H.: Electrochemical behaviour of nano-sized spinel LiMn2O4 and LiAlxMn2-xO4 (x = Al: 0.00-0.40) synthesized via fumaric acid-assisted sol-gel synthesis for use in lithium rechargeable batteries. J. Phys. Chem. Solids 69, 2082 (2008).CrossRefGoogle Scholar
26.Tang, S.B., Lai, M.O., and Lu, L.: Properties of nano-crystalline LiMn2O4 thin films deposited by pulsed laser deposition. Electrochim. Acta 52, 1161 (2006).CrossRefGoogle Scholar
27.Li, X.X., Cheng, F.Y., Guo, B., and Chen, J.: Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 109, 14017 (2005).CrossRefGoogle Scholar
28.Cabana, J., Valdes-Solis, T., Palacin, M.R., Oro-Sole, J., Fuertes, A., Marban, G., and Fuertes, A.B.: Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route. J. Power Sources 166, 492 (2007).CrossRefGoogle Scholar
29.Mai, L.Q., Xu, X., Xu, L., Han, C.H., and Luo, Y.Z.: Vanadium oxide nanowires for Li-ion batteries. J. Mater. Res. 26, 2175 (2011).CrossRefGoogle Scholar
30.Kim, D.K., Muralidharan, P., Lee, H.W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H., Huggins, R.A., and Cui, Y.: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948 (2008).CrossRefGoogle ScholarPubMed
31.Yang, Y., Xie, C., Ruffo, R., Peng, H.L., Kim, D.K., and Cui, Y.: Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).CrossRefGoogle ScholarPubMed
32.Hosono, E., Kudo, T., Honma, I., Matsuda, H., and Zhou, H.S.: Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 9, 1045 (2009).CrossRefGoogle ScholarPubMed
33.Xiao, X., Wang, L., Wang, D., He, X., Peng, Q., and Li, Y.: Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Res. 2, 923 (2010).CrossRefGoogle Scholar
34.Roisnel, T. and Rodriguez-Carvajal, J.: WinPLOTR: A windows tool for powder diffraction pattern analysis, in Epdic 7, in European Powder Diffraction, Pts 1 and 2, edited by Delhez, R. and Mittemeijer, E.J. (Trans Tech Publications Ltd., Zurich, Switzerland, 2001); pp. 118.Google Scholar
35.Kumagai, N., Fujiwara, T., Tanno, K., and Horiba, T.: Physical and electrochemical characterization of quaternary Li-Mn-V-O spinel as positive materials for rechargeable lithium batteries. J. Electrochem. Soc. 143, 1007 (1996).CrossRefGoogle Scholar
36.Iguchi, E., Tokuda, Y., Nakatsugawa, H., and Munakata, F.: Electrical transport properties in LiMn2O4, Li0.95Mn2O4, and LiMn1.95B0.05O4 (B = Al or Ga) around room temperature. J. Appl. Phys. 91, 2149 (2002).CrossRefGoogle Scholar
37.Long, J.W., Dunn, B., Rolison, D.R., and White, H.S.: Three-dimensional battery architectures. Chem. Rev. 104, 4463 (2004).CrossRefGoogle ScholarPubMed