Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T05:01:19.479Z Has data issue: false hasContentIssue false

Novel sulfonated poly(ether ether ketone)/phosphonated polysulfone polymer blends for proton conducting membranes

Published online by Cambridge University Press:  07 June 2012

Nedal Y. Abu-Thabit*
Affiliation:
Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Shaikh A. Ali
Affiliation:
Center of Research Excellence in Renewable Energy and Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
S.M. Javaid Zaidi
Affiliation:
Center of Research Excellence in Renewable Energy and Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Khaled Mezghani
Affiliation:
Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Phosphonated polysulfones in the acid form (PPSU-As) with degree of phosphonation (DP) = 0.4, 0.75, and 0.96 were successfully synthesized and utilized for the preparation of polymer blend with sulfonated poly(ether ether ketone) (SPEEK) having a degree of sulfonation (DS) = 75. The resulted blend membranes were characterized and investigated as new polyelectrolyte membrane for fuel cells applications. SPEEK/PPSU-A blend membranes formed ionic networks through hydrogen bonding bridges between the strong sulfonic acid groups and the amphoteric phosphonic acid groups. These ionic interactions resulted in enhanced membrane properties in terms of water swelling, methanol uptake, methanol permeability, mechanical strength, and thermal stability, without significant loss of proton conductivity. All the blend membranes were transparent to visible light with presence of microphases in the order of 10–20 nm. When compared to parent SPEEK membranes, the new SPEEK/PPSU-A blend membranes showed slightly lower methanol permeability compared to neat SPEEK membrane. Membranes with 30 wt% phosphonic acid content with DP = 0.75 and 0.96, exhibited slightly higher proton conductivities at temperatures above 50 °C in comparison with Nafion membrane.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Neburchilov, V., Martin, J., Wang, H., and Zhang, J.: A review of polymer electrolyte membranes for direct methanol fuel cells. J. Power Sources 169, 221 (2007).CrossRefGoogle Scholar
2.DeLuca, N.W. and Elabd, Y.A.: Polymer electrolyte membranes for the direct methanol fuel cell: A review. J. Polym. Sci., Part B: Polym. Phys. 44, 2201 (2006).CrossRefGoogle Scholar
3.Jagur-Grodzinski, J.: Polymeric materials for fuel cells: Concise review of recent studies. Polym. Adv. Technol. 18, 785 (2007).CrossRefGoogle Scholar
4.Ahmed, M. and Dincer, I.: A review on methanol crossover in direct methanol fuel cells: Challenges and achievements. Int. J. Energy Res. 35, 1213 (2011).CrossRefGoogle Scholar
5.Kim, H-J., Krishnan, N.N., Lee, S-Y., Hwang, S.Y., Kim, D., Jeong, K.J., Lee, J.K., Cho, E., Lee, J., Han, J., Ha, H.Y., and Lim, T-H.: Sulfonated poly(ether sulfone) for universal polymer electrolyte fuel cell operations. J. Power Sources 160, 353 (2006).CrossRefGoogle Scholar
6.Zhang, N., Zhang, G., Xu, D., Zhao, C., Ma, W., Li, H., Zhang, Y., Xu, S., Jiang, H., Sun, H., and Na, H.: Cross-linked membranes based on sulfonated poly(ether ether ketone) (SPEEK)/Nafion for direct methanol fuel cells (DMFCs). Int. J. Hydrogen Energy 36, 11025 (2011).CrossRefGoogle Scholar
7.Jaafar, J., Ismail, A.F., Matsuura, T., and Nagai, K.: Performance of SPEEK based polymer-nanoclay inorganic membrane for DMFC. J. Membr. Sci. 382, 202 (2011).CrossRefGoogle Scholar
8.Li, H., Zhang, G., Ma, W., Zhao, C., Zhang, Y., Han, M., Zhu, J., Liu, Z., Wu, J., and Na, H.: Composite membranes based on a novel benzimidazole grafted PEEK and SPEEK for fuel cells. Int. J. Hydrogen Energy 35, 11172 (2010).CrossRefGoogle Scholar
9.Cho, E-B., Luu, D.X., and Kim, D.: Enhanced transport performance of mesoporous benzene-silica incorporated sulfonated poly(ether ether ketone) composite membranes for fuel cell application. J. Membr. Sci. 351, 58 (2010).CrossRefGoogle Scholar
10.Zhong, S., Cui, X., Fu, T., and Na, H.: Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover. J. Power Sources 180, 23 (2008).CrossRefGoogle Scholar
11.Lee, J.K., Li, W., and Manthiram, A.: Sulfonated poly(ether ether ketone) as an ionomer for direct methanol fuel cell electrodes. J. Power Sources 180, 56 (2008).CrossRefGoogle Scholar
12.Jaafar, J., Ismail, A.F., and Mustafa, A.: Physicochemical study of poly(ether ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application. Mater. Sci. Eng., A A460A461, 475 (2007).Google Scholar
13.Fu, Y.Z., Manthiram, A., and Guiver, M.D.: Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for DMFCs. Electrochem. Solid-State Lett. 10, B70 (2007).CrossRefGoogle Scholar
14.Zhao, C., Lin, H., Shao, K., Li, X., Ni, H., Wang, Z., and Na, H.: Block sulfonated poly(ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes. J. Power Sources 162, 1003 (2006).CrossRefGoogle Scholar
15.Carbone, A., Pedicini, R., Portale, G., Longo, A., D’Ilario, L., and Passalacqua, E.: Sulphonated poly(ether ether ketone) membranes for fuel cell application: Thermal and structural characterisation. J. Power Sources 163, 18 (2006).CrossRefGoogle Scholar
16.Erce, S., Erdener, H., Akay, R.G., Yuecel, H., Bac, N., and Eroglu, I.: Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. Int. J. Hydrogen Energy 34, 4645 (2009).CrossRefGoogle Scholar
17.Fontananova, E., Trotta, F., Jansen, J.C., and Drioli, E.: Preparation and characterization of new non-fluorinated polymeric and composite membranes for PEMFCs. J. Membr. Sci. 348, 326 (2010).CrossRefGoogle Scholar
18.Sutrisno, J. and Fuchs, A.: Surface modification of heteropolyacids (HPAs) for proton exchange membrane fuel cells (PEMFCs). ECS Trans. 28, 1 (2010).CrossRefGoogle Scholar
19.Sangeetha, R.G., Beera, M.K., and Pugazhenthi, G.: Development of sulfonated poly(ether ether ketone)/zirconium titanium phosphate composite membranes for direct methanol fuel cell. J. Appl. Polym. Sci. 124, E45 (2012).Google Scholar
20.Sgreccia, E., Di Vona, M.L., Licoccia, S., Sganappa, M., Casciola, M., Chailan, J.F., and Knauth, P.: Self-assembled nanocomposite organic-inorganic proton conducting sulfonated poly-ether-ether-ketone (SPEEK)-based membranes: Optimized mechanical, thermal and electrical properties. J. Power Sources 192, 353 (2009).CrossRefGoogle Scholar
21.Ramaganthan, B., Sivakumar, P.M., and Dharmalingam, S.: Synthesis, characterization of novel silicotungstic acid incorporated SPEEK/PVA-co-ethylene-based composite membranes for fuel cell. J. Mater. Sci. 46, 1741 (2011).CrossRefGoogle Scholar
22.Guhan, S., Muruganantham, R., and Sangeetha, D.: Development of a solid polymer electrolyte membrane based on sulfonated poly(ether ether) ketone and polysulfone for fuel cell applications. Can. J. Chem. 90, 205 (2012).CrossRefGoogle Scholar
23.Li, Y., Li, Z., Lu, X., Zhang, C., Wang, Z., Kong, L., Wang, C., and Liu, X.: Composite membranes based on sulfonated poly(aryl ether ketone)s containing the hexafluoroisopropylidene diphenyl moiety and poly(amic acid) for proton exchange membrane fuel cell application. Int. J. Hydrogen Energy 36, 14622 (2011).CrossRefGoogle Scholar
24.Fu, Y., Manthiram, A., and Guiver, M.D.: Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem. Commun. 8, 1386 (2006).CrossRefGoogle Scholar
25.Coleman, M.M., Serman, C.J., Bhagwagar, D.E., and Painter, P.C.: A practical guide to polymer miscibility. Polymer 31, 1187 (1990).CrossRefGoogle Scholar
26.Brisson, J.: Blends, hydrogen bonds, and orientation: Understanding the role of interactions. Polym. Eng. Sci. 44, 241 (2004).CrossRefGoogle Scholar
27.He, Y., Zhu, B., and Inoue, Y.: Hydrogen bonds in polymer blends. Prog. Polym. Sci. 29, 1021 (2004).CrossRefGoogle Scholar
28.Kuo, S-W.: Hydrogen-bonding in polymer blends. J. Polym. Res. 15, 459 (2008).CrossRefGoogle Scholar
29.Kerres, J.A.: Blended and cross-linked ionomer membranes for application in membrane fuel cells. Fuel Cells 5, 230 (2005).CrossRefGoogle Scholar
30.Lin, C.W., Thangamuthu, R., and Yang, C.J.: Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications. J. Membr. Sci. 253, 23 (2005).CrossRefGoogle Scholar
31.Smitha, B., Sridhar, S., and Khan, A.A.: Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications. J. Polym. Sci., Part B: Polym. Phys. 43, 1538 (2005).CrossRefGoogle Scholar
32.Choi, J.K., Lee, D.K., Kim, Y.W., Min, B.R., and Kim, J.H.: Composite polymer electrolyte membranes comprising triblock copolymer and heteropolyacid for fuel cell applications. J. Polym. Sci., Part B: Polym. Phys. 46, 691 (2008).CrossRefGoogle Scholar
33.Zhu, X., Liang, Y., Pan, H., Jian, X., and Zhang, Y.: Synthesis and properties of novel H-bonded composite membranes from sulfonated poly(phthalazinone ether)s for PEMFC. J. Membr. Sci. 312, 59 (2008).CrossRefGoogle Scholar
34.Kerres, J., Ullrich, A., Meier, F., and Haring, T.: Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243 (1999).CrossRefGoogle Scholar
35.Jorissen, L., Gogel, V., Kerres, J., and Garche, J.: New membranes for direct methanol fuel cells. J. Power Sources 105, 267 (2002).CrossRefGoogle Scholar
36.Ren, S., Sun, G., Li, C., Wu, Z., Jin, W., Chen, W., Xin, Q., and Yang, X.: Sulfonated poly (ether ether ketone)/polyvinylidene fluoride polymer blends for direct methanol fuel cells. Mater. Lett. 60, 44 (2005).CrossRefGoogle Scholar
37.Wootthikanokkhan, J. and Seeponkai, N.: Methanol permeability and properties of DMFC membranes based on sulfonated PEEK/PVDF blends. J. Appl. Polym. Sci. 102, 5941 (2006).CrossRefGoogle Scholar
38.Xue, S. and Yin, G.: Proton exchange membranes based on poly(vinylidene fluoride) and sulfonated poly(ether ether ketone). Polymer 47, 5044 (2006).CrossRefGoogle Scholar
39.Jung, H-Y. and Park, J-K.: Blend membranes based on sulfonated poly(ether ether ketone) and poly(vinylidene fluoride) for high performance direct methanol fuel cell. Electrochim. Acta 52, 7464 (2007).CrossRefGoogle Scholar
40.Zaidi, S.M.J.: Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate. Electrochim. Acta 50, 4771 (2005).CrossRefGoogle Scholar
41.Pasupathi, S., Ji, S., Bladergroen, B.J., and Linkov, V.: High DMFC performance output using modified acid-base polymer blend. Int. J. Hydrogen Energy 33, 3132 (2008).CrossRefGoogle Scholar
42.Sgreccia, E., Di Vona, M.L., and Knauth, P.: Hybrid composite membranes based on SPEEK and functionalized PPSU for PEM fuel cells. Int. J. Hydrogen Energy 36, 8063 (2011).CrossRefGoogle Scholar
43.Yang, T.: Preliminary study of SPEEK/PVA blend membranes for DMFC applications. Int. J. Hydrogen Energy 33, 6772 (2008).CrossRefGoogle Scholar
44.Wu, H-L., Ma, C-C.M., Li, C-H., Lee, T-M., Chen, C-Y., Chiang, C-L., and Wu, C.: Sulfonated poly(ether ether ketone)/poly(amide imide) polymer blends for proton conducting membrane. J. Membr. Sci. 280, 501 (2006).CrossRefGoogle Scholar
45.Thomas, O.D., Peckham, T.J., Thanganathan, U., Yang, Y., and Holdcroft, S.: Sulfonated polybenzimidazoles: Proton conduction and acid-base crosslinking. J. Polym. Sci., Part A: Polym. Chem. 48, 3640 (2010).CrossRefGoogle Scholar
46.Papadimitriou, K.D., Andreopoulou, A.K., and Kallitsis, J.K.: Phosphonated fully aromatic polyethers for PEMFCs applications. J. Polym. Sci., Part A: Polym. Chem. 48, 2817 (2010).CrossRefGoogle Scholar
47.Ingratta, M., Elomaa, M., and Jannasch, P.: Grafting poly(phenylene oxide) with poly(vinylphosphonic acid) for fuel cell membranes. Polym. Chem. 1, 739 (2010).CrossRefGoogle Scholar
48.Parvole, J. and Jannasch, P.: Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state. Macromolecules 41, 3893 (2008).CrossRefGoogle Scholar
49.Parvole, J. and Jannasch, P.: Poly(arylene ether sulfone)s with phosphonic acid and bis(phosphonic acid) on short alkyl side chains for proton-exchange membranes. J. Mater. Chem. 18, 5547 (2008).CrossRefGoogle Scholar
50.Parcero, E., Herrera, R., and Nunes, S.P.: Phosphonated and sulfonated polyhphenylsulfone membranes for fuel cell application. J. Membr. Sci. 285, 206 (2006).CrossRefGoogle Scholar
51.Pezzin, S.H., Stock, N., Shishatskiy, S., and Nunes, S.P.: Modification of proton conductive polymer membranes with phosphonated polysilsesquioxanes. J. Membr. Sci. 325, 559 (2008).CrossRefGoogle Scholar
52.Tienda, K., Yu, Z., Constandinidis, F., Fortney, A., Feld, W.A., and Fossum, E.: Poly(arylene ether)s with pendant diphenyl phosphoryl groups: Synthesis, characterization, and thermal properties. J. Polym. Sci., Part A: Polym. Chem. 49, 2908 (2011).CrossRefGoogle Scholar
53.Lafitte, B. and Jannasch, P.: On the prospects for phosphonated polymers as proton-exchange fuel cell membranes. Adv. Fuel Cells 1, 119 (2007).CrossRefGoogle Scholar
54.Abu-Thabit, N.Y., Ali, S.A., and Javaid, Z.S.M.: New highly phosphonated polysulfone membranes for PEM fuel cells. J. Membr. Sci. 360, 26 (2010).CrossRefGoogle Scholar
55.ASTM-D882: Standard Test Method for Tensile Properties of Thin Plastic Sheeting (American Society for Testing and Materials, Philadelphia, PA, 2001).Google Scholar
56.Zhai, Y., Zhang, H., Zhang, Y., and Xing, D.: A novel H3PO4/Nafion–PBI composite membrane for enhanced durability of high temperature PEM fuel cells. J. Power Sources 169, 259 (2007).CrossRefGoogle Scholar
57.Lin, H-L., Hu, C-R., Su, P-H., Chou, Y-C., and Lin, C-Y.: Proton exchange membranes based on blends of poly(benzimidazole) and butylsulfonated poly(beznimidazole) for high temperature PEMFC. 8th International Fuel Cell Science. Eng. Technol. Conf. 2, 641 (2010).Google Scholar
58.Smitha, B., Sridhar, S., and Khan, A.A.: Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur. Polym. J. 41, 1859 (2005).CrossRefGoogle Scholar
59.Hill, M.L., Kim, Y.S., Einsla, B.R., and McGrath, J.E.: Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells. J. Membr. Sci. 283, 102 (2006).CrossRefGoogle Scholar