Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T12:30:52.309Z Has data issue: false hasContentIssue false

Novel precursor-derived Al–C–N–(O)-based ceramic additive for the low-temperature pressureless sintering of silicon nitride

Published online by Cambridge University Press:  31 January 2011

Sea-Hoon Lee*
Affiliation:
Max Planck Institute for Metal Research and Institute for Non-metallic Inorganic Materials, University of Stuttgart, D-70569 Stuttgart, Germany; and Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
Markus Weinmann
Affiliation:
Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
Peter Gerstel
Affiliation:
Max Planck Institute for Metal Research and Institute for Non-metallic Inorganic Materials, University of Stuttgart, D-70569 Stuttgart, Germany
Georg Rixecker
Affiliation:
Max Planck Institute for Metal Research and Institute for Non-metallic Inorganic Materials, University of Stuttgart, D-70569 Stuttgart, Germany
Sung-Churl Choi
Affiliation:
Ceramic Processing Research Center, Hanyang University, Sungdong-Gu, Seoul 133-791, Korea
Fritz Aldinger
Affiliation:
Max Planck Institute for Metal Research and Institute for Non-metallic Inorganic Materials, University of Stuttgart, D-70569 Stuttgart, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]Current address: National Institute for Material Science, Material Engineering Laboratory, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
Get access

Abstract

A polymer, which by pyrolysis transforms into Al–C–N–(O) ceramics, was synthesized from trimethylamine alane and cyan amide, and its applicability as a sintering additive for Si3N4 was investigated. Si3N4 powders were mixed with the precursor by treatment with organic slurries of the precursor to induce the homogeneous distribution of the additive. The green-bodies were pretreated in air or NH3 at 800 °C to control the chemical composition of the additive, through which the densification of Si3N4 could be improved. Dense samples with very fine grains (<2 μm) were obtained after sintering at 1600 °C in 0.1 MPa N2. Besides silicon nitride, submicrometer silicon carbide particles were observed in the samples, indicating that this procedure (i.e., the use of this novel sintering additive) also allows for the fabrication of SiC–Si3N4 composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Petzow, G.Herrmann, M.: Silicon nitride ceramics in High Performance Non-oxide Ceramics 102 edited by M. Jansen Springer Berlin 2002 50Google Scholar
2Briggs, J.: Pressureless sintering of sialon ceramics. Mater. Res. Bull. 12, 1047 1977CrossRefGoogle Scholar
3Peng, J.: Thermochemistry and constitution of precursor-derived Si-(B)-C-N ceramics. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany,2002 37Google Scholar
4Wada, S.: Control of instability of Si3N4 during pressureless sintering. J. Ceram. Soc. Jpn. 109, 803 2001CrossRefGoogle Scholar
5Mitomo, M.Fukunaga, O.: The stability of α-Sialon at high temperature. J. Ceram. Soc. Jpn. 89, 631 1981Google Scholar
6Kulig, M., Oroschin, W.Greil, P.: Sol-gel coating of silicon nitride with Mg-Al oxide sintering aid. J. Eur. Ceram. Soc. 5, 209 1989CrossRefGoogle Scholar
7Yang, J., Oliveira, F.J., Silva, R.F.Ferreira, J.M.F.: Pressureless sinterability of slip cast silicon nitride bodies prepared from coprecipitation-coated powders. J. Eur. Ceram. Soc. 19, 433 1999CrossRefGoogle Scholar
8Mah, T-I., Mazdiyasni, K.S.Run, R.: Characterization and properties of hot-pressed Si3N4 with alkoxy-derived CeO2 or Y2O3 as sintering aids. Am. Ceram. Soc. Bull. 72, 99 1993Google Scholar
9Shaw, T.M.Pethica, B.A.: Preparation and sintering of homogeneous silicon nitride green compact. J. Am. Ceram. Soc. 69, 88 1986CrossRefGoogle Scholar
10Wang, L.W., Roy, S., Sigmund, W.Aldinger, F.: In-situ incorporation of sintering additives in Si3N4 powder by a combustion process. J. Eur. Ceram. Soc. 19, 61 1999CrossRefGoogle Scholar
11Mulfinger, H.O.: Physical and chemical solubility of nitrogen in glass melts. J. Am. Ceram. Soc. 49, 462 1966CrossRefGoogle Scholar
12Brow, R.K.Pantano, C.G.: Nitrogen coordination in oxynitride glasses. Comm. Am. Ceram. Soc. 67, C72 1984CrossRefGoogle Scholar
13Chen, J., Wie, P.Huang, Z.: Formation and properties of La-Y-Si-O-N oxynitride glasses. J. Mater. Sci. Lett. 16, 1486 1997CrossRefGoogle Scholar
14Lonergan, J., Morrissey, V., Flynn, R., Pomeroy, M.Hampshire, S.: Glass formation and crystallisation in oxynitride systems in Key Engineering Materials 72–74 edited by M. Buggy and S. Hampshire Trans Tech Publications Ltd. Zuelich 1992 145Google Scholar
15Strecker, K., Gonzaga, R.Hoffmann, M.: Sintering of silicon nitride ceramics with additive mixtures based on yttria, aluminum nitride and alumina in Key Engineering Materials, 189–191 edited by L. Salgado, F.A. Filho, and R. Muccilo Trans Tech Publications Ltd. Zuelich 1992 110Google Scholar
16Ekstroem, T.Nygren, M.: SiAlON ceramics. J. Am. Ceram. Soc. 75, 259 1992CrossRefGoogle Scholar
17Niihara, K., Izaki, K.Kawakami, T.: Hot-pressed Si3N4-32% SiC nanocomposite from amorphous Si-C-N powder with improved strength above 1200 °C. J. Mater. Sci. Lett. 10, 112 1990CrossRefGoogle Scholar
18Niihara, K.: New design concept of structural ceramics-ceramic nanocomposite. J. Ceram. Soc. Jpn. 99, 974 1991CrossRefGoogle Scholar
19Sajgalik, P., Hnatko, M.Lofaj, F.: SiC/Si3N4 nano/micro-composite-processing, RT and HT mechanical properties. J. Eur. Ceram. Soc. 20, 453 2000CrossRefGoogle Scholar
20Greil, P.: Polymer derived engineering ceramics. Adv. Eng. Mater. 2, 339 20003.0.CO;2-K>CrossRefGoogle Scholar
21Ishikawa, T., Kohtoku, Y., Kumagawa, K., Yamamura, T.Nagasawa, T.: High-strength alkali-resistant sintered SiC fibre stable to 2,200 degree C. Nature 391, 773 1998CrossRefGoogle Scholar
22Bao, X.Edirisinghe, M.J.: Different strategies for the synthesis of silicon carbide-silicon nitride composites from preceramic polymers. Composites: Part A 30, 601 1999CrossRefGoogle Scholar
23Matsumoto, R.L.K.Schwark, J.M.: Preceramic polymers incorporating boron and their application in the sintering of silicon carbide. U.S. Patent. No. 5 206 327, April 27, 1993,Google Scholar
24Mueller, A., Gerstel, P., Butchereit, E., Nickel, K.G.Aldinger, F.: Si/B/C/N/Al precursor-derived ceramics: Synthesis, high temperature behaviour and oxidation resistance. J. Eur. Ceram. Soc. 24, 3409 2004CrossRefGoogle Scholar
25Shriver, D.F.Drezdzon, M.A.: The Manipulation of Air-Sensitive Compounds, 2nd ed.Wiley New York 1986 139Google Scholar
26Sauter, D.H.: Structure understanding of amorphous B–C–N ceramics by the help of Roentgen- and neutron-contrast variation through isotrope substitution.Ph.D. Thesis, University of Stuttgart, Stuttgart,2000 33Google Scholar
27Riedel, R., Passing, G., Schoenfelder, H.Brook, R.J.: Synthesis of dense silicon-based ceramics at low temperature. Nature 355, 714 1992CrossRefGoogle Scholar
28Haug, R., Weinmann, M., Bill, J.Aldinger, F.: Plastic forming of preceramic polymers. J. Eur. Ceram. Soc. 19, 1 1999CrossRefGoogle Scholar
29Yamade, T., Kanetsuki, Y., Fueda, K., Takahashi, T., Kohtoku, Y.Asada, H.: Effect of powder characteristics on sintering behavior of silicon nitride in Key Engineering Materials, 89–91 edited by M.J. Hoffmann, P.F. Becher, and G. Petzow Trans Tech Publications Ltd. Zuelich, 1994 177Google Scholar
30Bahloul, D., Pereira, M.Goursat, P.: Silicon carbonitride derived from an organometallic precursor: Influence of the microstructure on the oxidation behaviour. Ceram. Int. 18, 1 1992CrossRefGoogle Scholar
31Bahloul, D., Pereira, M., Goursat, P., Yive, N.S.C.K.Corriu, R.J.: Preparation of silicon carbonitrides from an organosilicon polymer: 1. Thermal decomposition of the cross-linked polysilazane. J. Am. Ceram. Soc. 76, 1156 1993CrossRefGoogle Scholar
32Natansohn, S., Pasto, A.E.Roueke, W.J.: Effect of powder surface modification on the properties of silicon nitride ceramics. J. Am. Ceram. Soc. 76, 2273 1993CrossRefGoogle Scholar
33Burns, G.T.Chandra, G.: Pyrolysis of preceramic polymers in ammonia: Preparation of silicon nitride powders. J. Am. Ceram. Soc. 72, 333 1989CrossRefGoogle Scholar
34Wang, Z.C., Kamphowe, T.W., Katz, S., Peng, J., Seifert, H.J., Bill, J.Aldinger, F.: Effects of polymer thermolysis on composition, structure and high-temperature stability of amorphous silicoboron carbonitride ceramics. J. Mater. Sci. Lett. 19, 1701 2000CrossRefGoogle Scholar
35Dong, S.M., Chollon, G., Labrugere, C., Lahaye, M., Guette, A., Bruneel, J.L., Couzi, M., Naslain, R.Jiang, D.L.: Characterization of nearly stoichiometric SiC ceramic fibers. J. Mater. Sci. 36, 2371 2001CrossRefGoogle Scholar
36Sunderkoetter, J.D., Grallath, E.Jenett, H.: Combined bulk and surface analysis of oxygen species in Si3N4 powders by means of carrier-gas heat-extraction methods and auger electron spectrometry. Fresenius’ J. Anal. Chem. 346, 237 1993CrossRefGoogle Scholar
37Lee, S.H., Rixecker, G., Aldinger, F., Choi, S.C.Oh, K.H.: Effects of powder bed conditions on the liquid-phase sintering of Si3N4. J. Mater. Res. 17, 465 2002CrossRefGoogle Scholar
38Gabriel, A.O., Riedel, R., Dressler, W., Reichert, S., Gervais, C., Maquet, J.Babonneau, F.: Thermal decomposition of poly(methylsilsesquicarbodiimide) to amorphous Si-C-N ceramics. Chem. Mater. 11, 412 1999CrossRefGoogle Scholar
39Seitz, J.Bill, J.: Production of compact polysilazane-derived Si/C/N-ceramics by plastic forming. J. Mater. Sci. Lett. 15, 391 1996CrossRefGoogle Scholar
40Ukyo, Y.Wada, S.: Sintering reaction in the system Si3N4-Y2O3-AlN. J. Ceram. Soc. Jpn. 102, 623 1994CrossRefGoogle Scholar
41Bulic, F.I., Zalite, I.Zhilinska, N.: Comparison of plasma-chemical synthesized SiAlON nano-powder and conventional prepared SiAlON powder. J. Eur. Ceram. Soc. 24, 3303 2004CrossRefGoogle Scholar
42Zenotchkine, M., Shuba, R., Kim, J.S.Chen, I.W.: R-curve behavior of in-situ toughened α-SiAlON ceramics. J. Am. Ceram. Soc. 84, 884 2001CrossRefGoogle Scholar
43Shen, Z.Nygren, M.: Tailoring the microstructure of duplex Si3N4-based ceramics by pre- and post-sintering heat-treatment in Key Engineering Materials, 159–160 edited by H. Suzuki, K. Komeya, and K. Uematsu Trans Tech Publications Ltd. Zuelich, 1999 251Google Scholar
44Sato, H., Mitomo, M., Nishimura, T.Emoto, H.: Mechanical properties of fine-grained silicon nitride ceramics. J. Ceram. Soc. Jpn. 106, 203 1998CrossRefGoogle Scholar
45Xu, X.Ferreira, J.M.F.: Temperature-induced gelation of concentrated Sialon suspensions. J. Am. Ceram. Soc. 88, 593 2005CrossRefGoogle Scholar
46Huang, Z.K., Rosenflanz, A.Chen, I.W.: Pressureless sintering of Si3N4 ceramic using AlN and rare-earth oxides. J. Am. Ceram. Soc. 80, 1256 1997CrossRefGoogle Scholar
47Herrmann, M., Schuber, C., Rendtel, A.Huebner, H.: Silicon nitride/silicon carbide nanocomposite materials: 1. Fabrication and mechanical properties at room temperature. J. Am. Ceram. Soc. 81, 1095 1998CrossRefGoogle Scholar
48Liden, E., Carlstroem, E., Eklund, L., Nyberg, B.Carlsson, R.: Homogeneous distribution of sintering additives in liquid-phase sintered silicon carbide. J. Am. Ceram. Soc. 78, 1761 1995CrossRefGoogle Scholar