Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T11:47:08.689Z Has data issue: false hasContentIssue false

Novel 4ZnO⋅B2O3⋅H2O:Ln3+/HTC (where Ln = Eu or Tb) phosphors: Synthesis, morphology and luminescence properties

Published online by Cambridge University Press:  17 June 2020

Lili He
Affiliation:
College of Chemistry, Liaoning University, Shenyang110036, P.R. China
Xiao Han
Affiliation:
College of Chemistry, Liaoning University, Shenyang110036, P.R. China
Chunhua Ge*
Affiliation:
College of Chemistry, Liaoning University, Shenyang110036, P.R. China
Rui Zhang
Affiliation:
College of Chemistry, Liaoning University, Shenyang110036, P.R. China
Yufang Hou
Affiliation:
College of Chemistry, Liaoning University, Shenyang110036, P.R. China
Xiangdong Zhang*
Affiliation:
College of Chemistry, Liaoning University, Shenyang110036, P.R. China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Hydrothermal carbon microsphere (HTC) is a carbon-based fluorescent material, which can be synthesized by hydrothermal carbonization of glucose. In this article, a series of 4ZnO·B2O3·H2O:Ln3+/HTC (where Ln = Eu or Tb) composites were prepared under hydrothermal conditions. The effects of the glucose concentration on the morphology, photoluminescence (PL) intensity and emission color of Zn3.64:Eu0.24[B2O7]·H2O/HTCx and Zn3.55:Tb0.3[B2O7]·H2O/HTCy were investigated. The relationship between morphology and PL intensity of composites was discussed. The results revealed that the presence of HTC did not change the original emission color of 4ZnO·B2O3·H2O:Ln3+ (where Ln = Eu or Tb) materials, but greatly increased their PL intensity, the sphere-like morphology composites have the strongest PL intensity. The Zn3.64:Eu0.24[B2O7]·H2O/HTCx and Zn3.55:Tb0.3[B2O7]·H2O/HTCy emit bright red light and green light, respectively, under respective excitation wavelengths. The present research suggests that the 4ZnO·B2O3·H2O:Ln3+/HTC (where Ln = Eu or Tb) composites may be candidates of red and green phosphors for display and lighting applications.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cheng, Y.Z., Shen, C.Y., Shen, L.L., Xiang, W.D., and Liang, X.J.: Tb3+, Eu3+ co-doped CsPbBr3 QDs glass with highly stable and luminous adjustable for white LEDs. ACS Appl. Mater. Interfaces 10, 21434 (2018).CrossRefGoogle ScholarPubMed
Cavouras, D., Kandarakis, I., Panayiotakis, G.S., and Nomicos, C.D.: Integrated model for estimating phosphor signal and noise transfer characteristics on medical images: Application to CdPO3CI:Mn phosphor screens. Med. Biol. Eng. Comput. 40, 273 (2002).CrossRefGoogle ScholarPubMed
Sommer, C., Hartmann, P., Pachler, P., Hoschopf, H., and Wenzl, F.P.: The phosphor's optical properties—Chromaticity coordinate relationship of phosphor converted white LEDs. Opt. Quantum Electron. 44, 111 (2011).CrossRefGoogle Scholar
Liang, P., Liu, J.W., and Liu, Z.H.: Controllable hydrothermal synthesis of Eu3+/Tb3+/Dy3+ activated Zn8[(BO3)3O2(OH)3] micro/nanostructured phosphors: Energy transfer and tunable emissions. RSC Adv. 6, 89113 (2016).CrossRefGoogle Scholar
Zhang, X.M., Lian, Q., Zhang, J.Y., Cai, P.Q., Kim, S.I., and Seo, H.J.: Tunable emission properties of Ca3B2O6:Ce3+ polycrystalline ceramics under ultraviolet light excitation. Ceram. Int. 41, 3469 (2015).CrossRefGoogle Scholar
Grigorjevaite, J., Janulevicius, M., Kruopyte, A., Ezerskyte, E., Vargalis, R., Vargalis, R., and Katelnikovas, A.: Synthesis and optical properties of efficient orange emitting GdB5O9:Sm3+ phosphors. J. Sol-Gel Sci. Technol. 54, 21434 (2018).Google Scholar
Wang, D.Y., Chen, Y.C., Huang, C., Cheng, B.M., and Chen, T.M.: Photoluminescence investigations on a novel green-emitting phosphor Ba3Sc(BO3)3:Tb3+ using synchrotron vacuum ultraviolet radiation. J. Mater. Chem. 22, 9957 (2012).CrossRefGoogle Scholar
Chae, K.W., Park, T.R., Cheon, C.I.I., and Kim, J.S.: Persistent luminescence of RE3+ co-doped Sr3B2O6:Eu2+ yellow phosphors (RE = Nd, Gd, Dy). J. Lumin. 194, 649 (2018).CrossRefGoogle Scholar
Hermus, M., Phan, P.C., Duke, A.C., and Brgoch, J.: Tunable optical properties and increased thermal quenching in the blue-emitting phosphor series: Ba2(Y1−xLux)5B5O17:Ce3+(x=0−1). Chem. Mater. 29, 5267 (2017).CrossRefGoogle Scholar
Nair, R.G., Nigam, S., Sudarsan, V., Vatsa, R.K., and Jain, V.K.: YBO3 versus Y3BO6 host on Tb3+ luminescence. J. Lumin. 195, 271 (2018).10.1016/j.jlumin.2017.11.038CrossRefGoogle Scholar
Yahiaoui, Z., Hassairi, M.A., Dammak, M., Cavalli, E., and Mezzadri, F.: Tunable luminescence and energy transfer properties in YPO4:Tb3+, Eu3+/Tb3+ phosphors. J. Lumin. 194, 96 (2018).CrossRefGoogle Scholar
Kłonkowski, A.M., Wiczk, W., Szczodrowski, K., Wilenska, D., Górecka, N., and Szyszkowska, M.: White emitting GeO2-PbO-Bi2O3-SrF2 glass and nano-glass ceramics co-doped with Eu3+, Tb3+ and Tm3+ ions. J. Alloys Compd. 705, 539 (2017).10.1016/j.jallcom.2017.02.153CrossRefGoogle Scholar
Ahemen, I. and Dejene, F.B.: Luminescence and energy transfer mechanism in Eu3+/Tb3+-co-doped ZrO2 nanocrystal rods. J. Nanopart. Res. 19, 6 (2016).Google Scholar
Colomer, M.T., Zur, L., Ferrari, M., Ortiz, A.L., and Fan, T.: Structural-microstructural characterization and optical properties of Eu3+,Tb3+-codoped LaPO4⋅nH2O and LaPO4 nanorods hydrothermally synthesized with microwaves. Ceram. Int. 44, 11993 (2018).CrossRefGoogle Scholar
Ansari, M.M.N., Khan, S., and Ahmad, N.: Effect of R3+ (R = Pr, Nd, Eu and Gd) substitution on the structural, electrical, magnetic and optical properties of Mn-ferrite nanoparticles. J. Magn. Magn. Mater. 465, 81 (2016).CrossRefGoogle Scholar
Nascimento, P.A.M., Silva, A.J.S., Carvalho, I.S., and Rezende, M.V.d.S.: Luminescence varied by selective excitation in Eu3+, Tb3+-doped LiSrPO4 phosphors for W-LEDs applications. Opt. Mater. 96, 109369 (2019).CrossRefGoogle Scholar
Yang, S.S., Jiang, L.W., Feng, J.L., Li, J.T., Chen, X., He, M.Y., and Chen, H.B.: An auto-combustion synthesis and luminescence properties of polyhedral YVO4:Ln3+ (Ln = Eu,Sm,Yb/Er,Yb/Tm) microcrystals. J. Mater. Res. 34, 3636 (2019).CrossRefGoogle Scholar
Kozhevnikova, N.M.: Synthesis and luminescence properties of a CsBaGd(MoO4)3:Er3+ phosphor with a Scheelite-like structure. Inorg. Mater. 54, 585 (2018).CrossRefGoogle Scholar
Wen, D. and Shi, J.: A novel narrow-line red emitting Na2Y2B2O7:Ce3+,Tb3+, Eu3+ phosphor with high efficiency activated by terbium chain for near-UV white LEDs. Dalton Trans. 42, 16621 (2013).CrossRefGoogle Scholar
Tang, J.Y., He, Y.M., Hao, L.Y., and Xu, X.: Fine-sized BaSi3Al3O4N5:Eu2+ phosphors prepared by solid-state reaction using BaF2 flux. J. Mater. Res. 28, 2598 (2013).CrossRefGoogle Scholar
Kucuk, N., Ayvacikli, M., Akca, S., Yuksel, M., Guinea, J.G., Karabulut, Y., Canimoglu, A., Topaksu, M., and Can, N.: Luminescence studies of zinc borates activated with different concentrations of Ce and La under X-ray and electron excitation. Appl. Radiat. Isotopes 127, 35 (2017).CrossRefGoogle ScholarPubMed
Kucuk, N., Bulcar, K., Dogan, T., Garcia Guinea, J., Portakal, Z.G., Karabulut, Y., Ayvacikli, M., Canimoglu, A., Topaksu, M., and Can, N.: Doping Sm3+ into ZnB2O4 phosphors and their structural and cathodoluminescence properties. J. Alloys Compd. 748, 245 (2018).CrossRefGoogle Scholar
Portakal, Z.G., Dogan, T., Balci Yegen, S., Küçük, N., Ayvacikli, M., Garcia Guinea, J., Canimoglu, A., Karabulut, Y., Topaksu, M., and Can, N.: Luminescence characteristics of Dy3+ incorporated zinc borate powders. J. Lumin. 188, 409 (2017).CrossRefGoogle Scholar
Li, Z.H., Ma, H.Y., Li, N., Du, Y., and Shao, Q.Y.: New phosphors of β-BaB2O4:RE3+ (RE3+=Eu3+, Tb3+). J. Alloys Compd. 747, 340 (2018).CrossRefGoogle Scholar
Cao, S.W., Jiao, Y., Han, W.F., Ge, C.H., Song, B., Wang, J., and Zhang, X.D.: Hydrothermal synthesis of 4ZnO⋅B2O3⋅H2O:Ln3+ (Ln = Eu, Tb) phosphors: Morphology-tunable and luminescence properties. Spectrochim. Acta A 190, 231 (2018).CrossRefGoogle Scholar
Liang, P. and Liu, Z.H.: Controllable synthesis, growth mechanism and luminescence property of a novel monodisperse microsphere with a hole for Zn8[(BO3)3O2(OH)3]:Eu3+. CrystEngComm 18, 1311 (2016).CrossRefGoogle Scholar
Liang, P., Qiao, L.J., and Liu, Z.H.: Controlled preparation and photoluminescence properties of Zn6O(OH)(BO)3:Eu(III) phosphors. Adv. Powder Technol. 28, 2613 (2017).CrossRefGoogle Scholar
Liang, P., Tuoheti, Z., and Liu, Z.H.: Controlling the structure and morphology of zinc borate by adjusting reaction temperature and the pH value: Formation mechanisms and luminescent properties. RSC Adv. 7, 3695 (2017).CrossRefGoogle Scholar
Liang, P., Wang, M.Z., and Liu, Z.H.: Synthesis and spectroscopic studies of Zn4B6O13 and Eu/Tb single-doped Zn4B6O13 phosphors. J. Rare Earths 35, 441 (2017).CrossRefGoogle Scholar
Zhang, M., Zuo, W.W., Zhu, M.F., Liu, D.G., Chen, Y.G., Zhu, M., Hong, H.R., Yang, C.Y., Wang, Y.G., Liu, J.L., and An, L.N.: Synthesis and photoluminescence properties of Eu3+-doped ZrO2 hollow spheres. J. Mater. Res. 30, 3740 (2015).CrossRefGoogle Scholar
Liang, Y.Y., Qiao, L.J., and Liu, Z.H.: Enhanced photoluminescence property of co-doped ZnB2O4:Eu3+, Tb3+ phosphor prepared by a thermal conversion method. J. Mater. Res. 31, 195 (2016).CrossRefGoogle Scholar
He, C., Xia, Z.G., and Liu, Q.L.: Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor. Opt. Mater. 42, 11 (2015).CrossRefGoogle Scholar
Wang, Y.Q., Chen, Y., Sun, Q.M., and Yan, B.: Synthesis, structure, and photoluminescence properties of Ce3+ and Tb3+ doped alkaline-earth silicate Sr2MgSi2O7 phosphors for WLEDs. J. Mater. Res. 32, 547 (2016).CrossRefGoogle Scholar
Yao, J.F., Wang, H.T., Liu, J., Chan, K.Y., Zhang, L.X., and Xu, N.P.: Preparation of colloidal microporous carbon spheres from furfuryl alcohol. Carbon 43, 1709 (2005).CrossRefGoogle Scholar
Titirici, M.M., Antonietti, M., and Baccile, N.: Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 10, 1204 (2015).CrossRefGoogle Scholar
Cao, S.W., Ren, M.L., Ge, C.H., Zhang, R., Wang, L.X., Han, W.F., and Zhang, X.D.: Novel donut-like carbon composites for the selective detection of Fe3+. J. Alloys Compd. 773, 555 (2019).CrossRefGoogle Scholar
Wang, X.B., Liu, J., and Xu, W.Z.: One-step hydrothermal preparation of amino-functionalized carbon spheres at low temperature and their enhanced adsorption performance towards Cr(VI) for water purification. Colloids Surf. A 415, 288 (2012).CrossRefGoogle Scholar
Liu, X., Li, W., Nai, X.Y., Bian, S.J., Meng, Q.F., Gao, D.D., and Wei, M.: Hydrothermal synthesis and formation of 4ZnO⋅B2O3⋅H2O whiskers via a new route. Cryst. Res. Technol. 47, 455 (2012).CrossRefGoogle Scholar
Sakaki, T., Shibata, M., Miki, T., Hirosue, H., and Hayashi, N.: Reaction model of cellulose decomposition in near-critical water and fermentation of products. Bioresour. Technol. 58, 197 (1996).CrossRefGoogle Scholar
Yue, H.Y., Chang, J., Gao, X., Zhang, S.L., Zhang, J.J., Zhang, H., Fei, W.D., Yu, Z.M., Guo, E.J., Kang, F.W., and Wang, L.P.: Effects of ZnO coating of whiskers on the tensile properties and aging behaviors of aluminum borate whiskers reinforced 2024Al composite. Mater. Sci. Eng. A 607, 89 (2014).CrossRefGoogle Scholar
Shi, X.X., Yuan, L.J., Sun, X.Z., Chang, C.X., and Sun, J.T.: Controllable synthesis of 4ZnO⋅B2O3⋅H2O nano-/microstructures with different morphologies: Influence of hydrothermal reaction parameters and formation mechanism. J. Phys. Chem. C 112, 3558 (2008).CrossRefGoogle Scholar
Krasnikov, G.Y. and Bokarev, V.P.: Surface energy and crystal faceting of elemental semiconductors and other substances. Dokl. Phys. Chem. 382, 14 (2002).CrossRefGoogle Scholar
Qiao, X.B., Cheng, Y., Qin, L., Qin, C.X., Cai, P.Q., Kim, S.I., and Seo, H.J.: Coprecipitation synthesis, structure and photoluminescence properties of Eu3+-doped sodium barium borate. J. Alloys Compd. 617, 946 (2014).CrossRefGoogle Scholar
Leng, Z.H., Xiong, H.L., Li, L.L., Zhang, N.N., Liu, Y.L., and Gan, S.C.: Facile controlled synthesis different morphologies of LuBO3:Ln3+ (Ln = Eu, Tb) phosphors and tunable luminescent properties. J. Alloys Compd. 646, 632 (2015).CrossRefGoogle Scholar
Liang, Y.Y. and Liu, Z.H.: Preparation of Eu3+ doped Al5BO9 red phosphor by a facile thermal conversion method and its enhanced luminescent property. J. Mater. Res. 31, 1433 (2016).CrossRefGoogle Scholar
Ramesh, B., Dillip, G.R., Raju, B.D.P., Somasundaram, K., Peddi, S.P., de Carvalho dos Anjos, V., and Joo, S.W.: Facile one-pot synthesis of hexagons of NaSrB5O9:Tb3+ phosphor for solid-state lighting. Mater. Res. Express 4, 046201 (2017).CrossRefGoogle Scholar
Reddy, G.V.L., Moorthy, L.R., Chengaiah, T., and Jamalaiah, B.C.: Multi-color emission tunability and energy transfer studies of YAl3(BO3)4:Eu3+/Tb3+ phosphors. Ceram. Int. 40, 3399 (2014).CrossRefGoogle Scholar
An, B.L., Gong, M.L., Cheah, K.W., Zhang, J.M., and Li, K.F.: Synthesis and bright luminescence of lanthanide (Eu(III), Tb(III)) complexes sensitized with a novel organic ligand. Chem. Phys. Lett. 385, 345 (2004).CrossRefGoogle Scholar
Zhang, Y., Gong, W.T., Yu, J.J., Lin, Y., and Ning, G.L.: Tunable white-light emission via energy transfer in single-phase LiGd(WO4)2:Re3+ (Re = Tm, Tb, Dy, Eu) phosphors for UV-excited WLEDs. RSC Adv. 5, 96272 (2004).CrossRefGoogle Scholar
Yang, J., Li, C.X., Quan, Z.W., Zhang, C.M., Yang, P.P., Li, Y.Y., Yu, C.C., and Lin, J.: Self-assembled 3D flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: Ethylene glycol-mediated hydrothermal synthesis and luminescent properties. J. Phys. Chem. C 112, 12777 (2008).CrossRefGoogle Scholar
Xu, L., Shen, J.M., Lu, C.L., Chen, Y.P., and Hou, W.H.: Self-assembled three-dimensional architectures of Y2(WO4)3:Eu: Controlled synthesis, growth mechanism, and shape-dependent luminescence properties. Cryst. Growth Des. 9, 3129 (2009).CrossRefGoogle Scholar
Yang, L., Li, G., Zhao, M., Zheng, J., Guan, X., and Li, L.: Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence. Nanotechnology 23, 245602 (2012).CrossRefGoogle ScholarPubMed
Supplementary material: File

He et al. supplementary material

Figure S1 and Tables SI-SIV

Download He et al. supplementary material(File)
File 1 MB