Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:59:41.034Z Has data issue: false hasContentIssue false

Nonlinear physical properties of some nonconventional semiconducting Bi–Pb–Ba–O glasses

Published online by Cambridge University Press:  31 January 2011

D. K. Modak
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700 032, India
G. Banerjee
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700 032, India
M. Karar
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700 032, India
M. Sadhukhan
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700 032, India
A. K. Bera
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700 032, India
B. K. Chaudhuri
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Calcutta-700 032, India
P. K. Pal
Affiliation:
Department of Physics, R.B.C. College, Naihati, West Bengal, India
Get access

Abstract

Semiconducting Bi1−xPbxBaO3−δ (or BPB) glasses with x = 0 to 0.8 have been prepared by fast quenching from the melt. Interesting anomalies in the temperature-dependent polaronic conductivity and dielectric constant have been observed in all these glass compositions at temperatures, Tp, varying from 310 to 330 K (depending on Pb concentration). This nonlinear behavior is considered to be associated with the local ordering or the displacements of the BiO3 type pyramidal structural units present in the glass matrix (observed from the infrared spectra of these glasses). This type of ordering/displacement gives rise to a local instability in the glass network structure which is also supported by the observed heat capacity anomaly around the same temperatures Tp.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cava, R. J., Takagi, H., Zandbergen, H. W., Hessen, B., Krajewski, J. J., and Peck, W. F., Jr., Phys. Rev. B 46, 14 101 (1992).Google Scholar
2.Hincs, D. G., Oabowski, B., Jorgensri, J. D., Michel, A. M., Richards, R. D., Pei, S., and Shi, D., Nature (London) 332, 836 (1980).Google Scholar
3.Kuentzler, R., Hornick, C., Dossmann, Y., Wegner, S., Farsi, R. El, and Drillon, M., Physica C 184, 316 (1991).Google Scholar
4.Komatsu, T., Nakakura, M., Sato, R., Khaled, J., and Matusita, K., J. Non. Cryst. Solids 195, 102 (1996).Google Scholar
5.Mollah, S., Som, K. K., Bose, K., and Chaudhuri, B. K., J. Appl. Phys. 74, 931 (1993); K. K. Som, S. Mollah, K. Bose, and B. K. Chaudhuri, Phys. Rev. B 45, 1655 (1993).Google Scholar
6.Mollah, S., Bera, A. K., Chakraborty, S., and Chaudhuri, B. K., Phys. Rev. B 49, 15 017 (1994).CrossRefGoogle Scholar
7.Mott, N. F. and Davis, E. A., in Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979).Google Scholar
8.Dumbaugh, W. H., Phys. Chem. Glass 19, 121 (1978).Google Scholar
9.Bera, A. K., Banerjee, G., Ghosh, A. K., Modak, D. K., Banerjee, S., and Chaudhuri, B. K., Phase Transitions 51, 217 (1995).Google Scholar
10.Banerjee, G., Ghosh, A. K., Dey, P. K., and Chaudhuri, B. K., Phase Transition 42, 231 (1993).Google Scholar
11.Dey, P. K., Som, K. K., Chawdhuri, K. R., Sarkar, B. K., and Chaudhuri, B. K., Phys. Rev. B 47, 3001 (1993).Google Scholar
12.Henderson, G. S. and Fleet, M. E., J. Non-Cryst. Solids 134, 911 (1991).Google Scholar
13.Chakraborty, S., Ph.D. Thesis, Jadavpur University, Calcutta (1995).Google Scholar
14.Lines, M. E. and Glass, A. M., in Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).Google Scholar
15. R. Kh. Kalimullin, Sobirov, D. E., Girsberg, Y. G., Kharionovskii, Yu S., and Bushmarina, G. B., Sov. Phys. Solid State 31, 1470 (1989).Google Scholar
16.Shukla, G. C. and Sinha, K. P., J. Phys. Chem. Solids 27, 1837 (1966).CrossRefGoogle Scholar
17.Testardi, L. R., Moulton, W. G., Mathias, H., Ng, H. K., and Rey, C. M., Phys. Rev. B 37, 2324 (1988).CrossRefGoogle Scholar
18.Frohlich, H., in Ferroelectricity, edited by Welle, E. (Elsevier, New York, 1967), p. 9.Google Scholar
19.Pepinsky, R., Physics of Electronic Ceramics–Part B, edited by Hench, L. L. and Dove, D. B. (Marcel Dekker, Inc., New York, 1972), p. 567.Google Scholar
20.Guha, S., Peebles, D., Wieting, T., Gilardi, R., and Norton, M., Physica C 185–189, 991 (1991).Google Scholar
21.Meng, J. F., Rai, B. K., Katiyar, R. S., and Zou, G. T., Phys. Lett. A229, 254 (1997).Google Scholar
22.Kristoffel, N. and Konsin, P., Phys. Status Solidi 28, 73 (1968).Google Scholar
23.Rajendran, V. and El. Batal, Ind. J. Pure Appl. Phys. 33, 29 (1995).Google Scholar