Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T14:01:45.539Z Has data issue: false hasContentIssue false

Nonhydrolytic sol-gel synthesis: Microstructural and morphological study on nickel ferrite nanocrystals coated with oleic acid

Published online by Cambridge University Press:  31 January 2011

H. Yin
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
G.M. Chow*
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nickel ferrite nanostructured particles coated with chemisorbed oleic acid were successfully synthesized by nonhydrolytic sol-gel method. By varying the composition of metal precursors, two microstructures were obtained, i.e., dispersed nanocrystals (9.7 ± 1.8 nm) and submicron aggregates (152 ± 21 nm) consisted of many nanocrystals (8.1 ± 1.3 nm). Because oleic acid could form complex with iron (III) ions, but not with nickel (II), increasing the concentration of iron precursor consumed more oleic acid and led to insufficient oleic acid coating on particle surface. Strong intercrystallite interaction was induced from less protected nanocrystals, and aggregation thus occurred between different crystallites.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sun, S., Murray, C.B., Weller, D., Folks, L.Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 2000Google Scholar
2Fertman, V.E.: Magnetic Fluids Guidebook: Properties and Applications Hemisphere Publishing Co. New York 1990 57Google Scholar
3Berkovsky, B.M., Medvedev, V.F.Krakov, M.S.: Magnetic Fluids: Engineering Applications Oxford University Press Oxford, UK 1993 125Google Scholar
4Grancharov, S.G., Zeng, H., Sun, S.H., Wang, S.X., O’Brien, S., Murray, C.B., Kirtley, J.R.Held, G.A.: Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J. Phys. Chem. B 109, 13030 2005CrossRefGoogle Scholar
5Berry, C.C.: Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. J. Mater. Chem. 15, 543 2005CrossRefGoogle Scholar
6Koh, I., Wang, X., Varughese, B., Isaacs, L., Ehrman, S.H.English, D.S.: Magnetic iron oxide nanoparticles for biorecognition: Evaluation of surface coverage and activity. J. Phys. Chem. B 110, 1553 2006CrossRefGoogle ScholarPubMed
7Doyle, F.M.Monhemius, A.J.: Kinetics and mechanisms of precipitation of nickel ferrite by hydrolytic stripping of iron (III)—nickel carboxylate solutions. Hydrometallurgy 35, 251 1994CrossRefGoogle Scholar
8Kumazawa, H., Oki, K., Cho, H.M.Sada, E.: Hydrothermal synthesis of ultrafine ferrite particles. Chem. Eng. Commun. 115, 25 1992CrossRefGoogle Scholar
9Konishi, Y., Kawamura, T.Asai, S.: Preparation and characterization of ultrafine nickel ferrite powders by hydrolysis of iron(III)–nickel carboxylate dissolved in organic solvent. Ind. Eng. Chem. Res. 35, 320 1996CrossRefGoogle Scholar
10Yang, H.M., Zhang, X.C., Ao, W.Q.Qiu, G.Z.: Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Mater. Res. Bull. 39, 833 2004CrossRefGoogle Scholar
11Teng, X.W.Yang, H.: Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles. J. Mater. Chem. 14, 774 2004CrossRefGoogle Scholar
12Sun, S.H., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X.Li, G.X.: Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273 2004CrossRefGoogle ScholarPubMed
13Deng, H., Li, X.L., Peng, Q., Wang, X., Chen, J.P.Li, Y.D.: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. Engl. 44, 2782 2005CrossRefGoogle ScholarPubMed
14Hyeon, T., Lee, S.S., Park, J., Chung, Y.Na, H.B.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 2001CrossRefGoogle ScholarPubMed
15Yu, S.Chow, G.M.: Carboxyl group (CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J. Mater. Chem. 14, 2781 2004Google Scholar
16Gomez-Lopera, S.A., Plaza, R.C.Delgado, A.V.: Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface Sci. 240, 40 2001CrossRefGoogle ScholarPubMed
17Gupta, A.K.Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 1565 2005CrossRefGoogle ScholarPubMed
18Joo, J., Kwon, S.G., Yu, T., Cho, M., Lee, J., Yoon, J.Hyeon, T.: Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. J. Phys. Chem. B 109, 15297 2005CrossRefGoogle ScholarPubMed
19Joo, J., Kwon, S.G., Yu, J.H.Hyeon, T.: Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions. Adv. Mater. 17, 1873 2005CrossRefGoogle Scholar
20Andrianainarivelo, M., Corriu, R.J.P., Leclercq, D., Mutin, P.H.Vioux, A.: Mixed oxides SiO2–ZrO2 and SiO2–TiO2 by a non-hydrolytic sol-gel route. J. Mater. Chem. 6, 1665 1996CrossRefGoogle Scholar
21Andrianainarivelo, M., Corriu, R.J.P., Leclercq, D., Mutin, P.H.Vioux, A.: Nonhydrolytic sol-gel process: Aluminium and zirconium titanate gels. J. Sol.-Gel Sci. Technol. 8, 89 1997Google Scholar
22Tang, J., Fabbri, J., Robinson, R.D., Zhu, Y.M., Herman, I.P., Steigerwald, M.L.Brus, L.E.: Solid-solution nanoparticles: Use of a nonhydrolytic sol-gel synthesis to prepare HfO2 and HfxZr1−xO2 nanocrystals. Chem. Mater. 16, 1336 2004Google Scholar
23Kessler, V.G., Spijksma, G.I., Seisenbaeva, G.A., Hakansson, S., Blank, D.H.A.Bouwmeester, H.J.M.: New insight in the role of modifying ligands in the sol-gel processing of metal alkoxide precursors: A possibility to approach new classes of materials. J. Sol.-Gel Sci. Technol. 40, 163 2006Google Scholar
24Shojai, F., Pettersson, A.B.A., Mantyla, T.Rosenholm, J.B.: Electrostatic and electrosteric stabilization of aqueous slips of 3Y–ZrO2 powder. J. Eur. Ceram. Soc. 20, 277 2000CrossRefGoogle Scholar
25Wu, N.Q., Fu, L., Su, M., Aslam, M., Wong, K.C.Dravid, V.P.: Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4, 383 2004CrossRefGoogle Scholar
26Tao, Y.T.: Structural comparison of self-assembled monolayers of n-alkanoic acid on the surface of silver, copper and aluminum. J. Am. Chem. Soc. 115, 4350 1993CrossRefGoogle Scholar
27Soderlind, F., Pedersen, H., Petoral, R.M., Kall, P.O.Uvdal, K.: Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J. Colloid Interface Sci. 288, 140 2005Google Scholar
28Shen, L.F., Laibinis, P.E.Hatton, T.A.: Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir 15, 447 1999CrossRefGoogle Scholar
29Vargas, J.M., Socolovsky, L.M., Knobel, M.Zanchet, D.: Dipolar interaction and size effects in powder samples of colloidal iron oxide nanoparticles. Nanotechnology 16, S285 2005CrossRefGoogle Scholar
30Nathani, H.Misra, R.D.K.: Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite– polymer nanocomposites. Mater. Sci. Eng., B 113, 228 2004Google Scholar
31Bodker, F., Hansen, M.F., Koch, C.B.Morup, S.: Particle interaction effects in antiferromagnetic NiO nanoparticles. J. Magn. Magn. Mater. 221, 32 2000CrossRefGoogle Scholar
32Patil, V., Mayya, K.S., Pradhan, S.D.Sastry, M.: Evidence for novel interdigitated bilayer formation of fatty acids during three-dimensional self-assembly on silver colloidal particles. J. Am. Chem. Soc. 119, 9281 1997Google Scholar
33Murray, C.B., Sun, S.H., Doyle, H.Betley, T.: Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bull. 26, 981 2001CrossRefGoogle Scholar
34Yin, M., Willis, A., Redl, F., Turro, N.J.O’Brien, S.P.: Influence of capping groups on the synthesis of gamma-Fe2O3 nanocrystals. J. Mater. Res. 19, 1208 2004Google Scholar
35Park, J., An, K.J., Hwang, Y.S., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M.Hyeon, T.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891 2004Google Scholar
36Park, J., Kang, E., Son, S.U., Park, H.M., Lee, M.K., Kim, J., Kim, K.W., Noh, H.J., Park, J.H., Bae, C.J., Park, J.G.Hyeon, T.: Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 17, 429 2005CrossRefGoogle Scholar
37Kang, E., Park, J., Hwang, Y., Kang, M., Park, J.G.Hyeon, T.: Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals. J. Phys. Chem. B 108, 13932 2004CrossRefGoogle Scholar