Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T09:25:01.787Z Has data issue: false hasContentIssue false

Nitride formation in iron after nitrogen implantation in a nickel top layer

Published online by Cambridge University Press:  31 January 2011

D. K. Inia
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
F. D. Tichelaar
Affiliation:
National Center for HREM, Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
W. M. Arnoldbik
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
A. M. Vredenberg
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands
D. O. Boerma
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands and Department of Nuclear Solid State Physics, Materials Science Center, Groningen University, Nijenborgh 4, 9747 AG Groningen, The Netherland
Get access

Extract

Nitrogen was introduced in an iron layer underneath a top layer of nickel. This was done by ion implantation of N into the Ni layer at a temperature of 200 °C. During implantation and subsequent anneals at 250 and 300 °C, N diffuses from the Ni layer into the Fe layer because of a larger affinity of Fe for N than of Ni for N. The concentration depth profiles of N in the Ni/Fe bilayers, as recorded with the nuclear reaction analysis technique, show at the highest implantation dose a peak below the Ni/Fe interface. From structural analysis techniques (x-ray diffraction and cross-sectional transmission electron microscopy) it was observed that this peak is due to the presence of an ε–Fe3−xN layer below the Ni/Fe interface. It is thus shown that ε –nitride can be formed in Fe at such low temperatures in the absence of radiation damage.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Marest, G., Def. Diff. Forum 57/58, 273 (1988).CrossRefGoogle Scholar
2.Somers, M.A. J. and Mittemeijer, E. J., Surf. Eng. 3, 123 (1987).CrossRefGoogle Scholar
3.Boerma, D.O. and Corts, T., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E., and Follstaedt, D. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 491.CrossRefGoogle Scholar
4.Bourdelle, K.K. and Boerma, D.O., Nucl. Instrum. Methods B 80/81, 496 (1993).Google Scholar
5.Bourdelle, K.K. and Boerma, D.O., in Beam-Solid Interactions: Fundamentals and Applications, edited by Nastasi, M.A., Harriott, L.R., Herbots, N., and Averback, R. S. (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 485.Google Scholar
6.Inia, D.K., Feiner, F.W. J., Arnoldbik, W.M., Vredenberg, A.M., and Boerma, D.O., Surf. Coat. Technol. 83, 65 (1996).Google Scholar
7.Barin, I. and Knacke, O., Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1973).Google Scholar
8.Hahn, H. and Konrad, A., Z. Anorg. Allg. Chem. 264, 181 (1951).CrossRefGoogle Scholar
9.Fromm, E. and Gebhardt, E., Gase und Kohlenstoff in Metallen (Springer, Berlin, 1976).Google Scholar
10.Mayer, J.W. and Rimini, E., Ion Beam Handbook for Material Analysis (Academic Press, New York, 1977).Google Scholar
11.Lappalainen, R. and Antilla, A., Appl. Phys. A 42, 263 (1987).Google Scholar
12.Wriedt, H.A., Bull. Alloy Phase Diagr. 6, 558 (1985).Google Scholar
13.Jack, D.H. and Jack, K.H., Mater. Sci. Eng. 11, 1 (1973).Google Scholar
14.Wriedt, H.A., Gokcen, N.A., and Nafziger, R.H., Bull. Alloy Phase Diagr. 8, 355 (1987).CrossRefGoogle Scholar
15.Bell, T. and Owen, W. S., J. Iron Steel Inst. 205, 428 (1967).Google Scholar
16.Jack, K.H., Acta Crystallogr. 5, 404 (1952).CrossRefGoogle Scholar
17.Vredenberg, A.M., Pérez-Martin, C.M., Custer, J. S., Boerma, D.O., de Wit, L., Saris, F.W., van der Pers, N.M., de Keijser, T.H., and Mittemeijer, E. J., J. Mater. Res. 7, 2689 (1992).Google Scholar
18.de Wit, L., Weber, T., Custer, J. S., and Saris, F.W., Phys. Rev. Lett. 72, 3835 (1994).CrossRefGoogle Scholar
19.Jack, K.H., J. Appl. Phys. 76, 6620 (1994).Google Scholar