Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T03:13:21.779Z Has data issue: false hasContentIssue false

Niobium and tantalum doped titania particles

Published online by Cambridge University Press:  31 January 2011

Petr Bezdička
Affiliation:
Institute of Inorganic Chemistry, 250 68 Řež, Czech Republic
Get access

Abstract

Niobium and tantalum doped anatase were prepared by thermal hydrolysis of peroxotitanium complex aqueous solutions containing of niobium or tantalum peroxo-complexes at 100 °C for 3 days. Niobium-doping increased the unit cell constants of anatase and changed the morphology of TiO2 from spindle-like to rectangular or square cross section. Nb and Ta doping in the TiO2 nanostructure increases the anatase to rutile transformation temperature to >1000 °C. In the visible region, the photocatalytic activity is directly proportional to the concentration and increases with increasing of Nb concentration. The niobium addition enhances the photocatalytic activity of titania in the visible light region.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W.Enviromental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
2.Sotter, E., Vilanova, X., Llobet, E., Stankova, M., Correig, X.Niobium-doped titania nanopowders for gas sensor applications. J. Optoelectron. Adv. Mater. 7, 1395 (2005)Google Scholar
3.Sharma, R.K., Bhatnagar, M.C., Sharma, G.L.Effect of Nb metal ion in TiO2 oxygen gas sensor. Appl. Surf. Sci. 92, 647 (1996)CrossRefGoogle Scholar
4.Pan, H., Chen, N., Shen, S., Huag, J.Preparation and characteristics of Nb5+, Ta5+/TiO2 nanoscale Y powders by sol-gel process using TiCl3. J. Sol-Gel Sci. Technol. 34, 63 (2005)CrossRefGoogle Scholar
5.Sabate, J., Anderson, M.A., Kikkawa, H., Xu, Q., Cervera-March, S., Hill, C.G.Nature and properties of pure and Nb-doped TiO2 ceramic membranes affecting the photocatalytic degradation of 3-chlorosalicylic acid as a model of halogenated organic compounds. J. Catal. 134, 36 (1992)CrossRefGoogle Scholar
6.Hirano, M., Matsushima, K.Photoactive and adsorptive niobium-doped anatase (TiO2) nanoparticles: Influence of hydrothermal conditions on their morphology, structure, and properties. J. Am. Ceram. Soc. 89, 110 (2006)CrossRefGoogle Scholar
7.Hirano, M., Matsushima, K.Effect of niobium on the structure and photoactivity of anatase (TiO2) nanoparticles. J. Nanosci. Nanotechnol. 6, 762 (2006)CrossRefGoogle ScholarPubMed
8.Hirano, M., Ichihashi, Y.Phase transformation and precipitation behavior of niobium component out of niobium-doped anatase-type TiO2 nanoparticles synthesized via hydrothermal crystallization. J. Mater. Sci. 44, 6135 (2009)CrossRefGoogle Scholar
9.Karvinen, S.M.The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide. Ind. Eng. Chem. Res. 42, 1035 (2006)CrossRefGoogle Scholar
10.Ahmad, A., Thiel, J., Shah, S.I.Structural effects of niobium and silver doping on titanium dioxide nanoparticles. J. Phys. Conf. Ser. 61, 11 (2007)CrossRefGoogle Scholar
11.Stodolny, M., Laniecki, M.Synthesis and characterization of mesoporous Ta2O5-TiO2 photocatalysts for water splitting. Catal. Today 142, 314 (2009)CrossRefGoogle Scholar
12.Visinescu, C.M., Sanjines, R., Lęevy, F., Marcu, V., Parvulescu, V.I.Tantalum doped titania photocatalysts: Preparation by DC reactive sputtering and catalytic behavior. J. Photochem. Photobiol., A 174, 106 (2005)CrossRefGoogle Scholar
13.Murafa, N., Stengl, V., Houskova, V.Monodispersed spindle-like particles of titania. Microsc. Microanal. 15, 1036 (2005)CrossRefGoogle Scholar
14.JCPDS PDF-2 release 2001 ICDD Newtown Square, PA (2001)Google Scholar
15.ICSD Database release 2010/1. FIZ Karlsruhe, Germany (2008)Google Scholar
16.Brunauer, S., Emmett, P.H., Teller, E.Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938)CrossRefGoogle Scholar
17.Barret, E.P., Joyner, L.G., Halenda, P.P.The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951)CrossRefGoogle Scholar
18.Orel, Z.C., Gunde, M.K., Orel, B.Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints. Prog. Org. Coat. 30, 59 (1997)CrossRefGoogle Scholar
19.Su, C., Hong, B.Y., Tseng, C.M.Sol-gel preparation and photocatalysis of titanium dioxide. Catal. Today 96, 119 (2004)CrossRefGoogle Scholar
20.Štengl, V., Houšková, V., Bakardjieva, S., Murafa, N., Havlín, V.Optically transparent titanium dioxide particles incorporated in hydroxyethyl methacrylate thin layers. J. Phys. Chem. C 112, 19979 (2008)CrossRefGoogle Scholar
21.Karim, M., Lee, H.S., Kim, Y.S., Bae, H.S., Lee, S.H.Analysis of salicylic acid based on the fluorescence enhancement of the As(III)-salicylic acid system. Anal. Chim. Acta 576, 136 (2006)CrossRefGoogle ScholarPubMed
22.Bakardjieva, S., Subrt, J., Stengl, V., Dianez, M.J., Sayagues, M.J.Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal., B 58, 193 (2005)CrossRefGoogle Scholar
23.Sotter, E., Vilanova, X., Llobet, E., Stankova, M., Correig, X.Niobium-doped titania nanopowders for gas sensor applications. J. Optoelectron. Adv. Mater. 7, 1395 (2005)Google Scholar
24.Houskova, V., Stengl, V., Bakardjieva, S., Murafa, N., Tyrpekl, V.Photocatalytic properties of Ru-doped titania prepared by homogeneous hydrolysis. Cent. Eur. J. Chem. 7, 259 (2009)Google Scholar
25.Lowell, S., Shields, J.E.Powder Surface Area and Porosity (Chapman & Hall, Boca Raton, FL 1998)Google Scholar
26.Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K.Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739 (1994)CrossRefGoogle Scholar
27.Shindo, D.The TEM characterization of monodispersed particles. JOM 54, 31 (2002)CrossRefGoogle Scholar
28.Colón, G., Hidalgo, M.C., Navío, J.A., Pulido Melián, E., González Díaz, O., Doña, J.M.Influence of amine template on the photoactivity of TiO2 nanoparticles obtained by hydrothermal treatment. Appl. Catal., B 78, 176 (2008)CrossRefGoogle Scholar
29.Pullar, R.C., Penn, S.J., Wang, X., Reaney, I.M., Alford, N.M.Dielectric loss caused by oxygen vacancies in titania ceramics. J. Eur. Ceram. Soc. 29, 419 (2009)CrossRefGoogle Scholar
30.Baiju, K.V., Shajesh, P., Wunderlich, W., Mukundan, P., Rajesh Kumar, S., Warrier, K.G.K.Effect of tantalum addition on anatase phase stability and photoactivity of aqueous sol-gel derived mesoporous titania. J. Mol. Catal. A: Chem. 276, 41 (2007)CrossRefGoogle Scholar
31.Simakov, D.S.A., Tsur, Y.Preparation of core-shell Ti-Nb oxide nanocrystals. J. Nanopart. Res. 10, 77 (2008)CrossRefGoogle Scholar
32.Mattsson, A., Leideborg, M., Larsson, K., Westin, G., Österlund, L.Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films. J. Phys. Chem. B 110, 1210 (2006)CrossRefGoogle ScholarPubMed
33.Bhatkhande, D.S., Pangarkar, V.G., Beenackers, A.A.Photocatalytic degradation for environmental applications—A review. J. Chem. Technol. Biotechnol. 77, 102 (2001)CrossRefGoogle Scholar
34.Reddy, K.M., Panorama, S.V., Reddy, A.R.Band gap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2002)CrossRefGoogle Scholar
35.Matthews, R.W.Purification of water with near UV illuminated suspensions of titanium dioxide. Water Res. 24, 653 (1992)CrossRefGoogle Scholar
36.Matthews, R.W.Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide. J. Catal. 111, 264 (1992)CrossRefGoogle Scholar
37.Mills, A., Holland, C.E., Davies, R.H., Worsley, D.Photomineralization of salicylic acid: A kinetic study. J. Photochem. Photobiol., A 83, 257 (1994)CrossRefGoogle Scholar
38.Macounová, M., Krysová, H., Ludvík, J., Jirkovsky, J.Kinetics of photocatalytic degradation of diuron in aqueous colloidal solutions of Q-TiO2 particles. J. Photochem. Photobiol., A 156, 273 (2003)CrossRefGoogle Scholar
39.Bhatkhande, D.S., Pangarkar, V.G., Beenackers, A.A.Photocatalytic degradation for environmental applications—A review. J. Chem. Technol. Biotechnol. 77, 102 (2001)CrossRefGoogle Scholar