Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T15:50:08.429Z Has data issue: false hasContentIssue false

A new route to single crystalline vanadium dioxide nanoflakes via thermal reduction

Published online by Cambridge University Press:  31 January 2011

Jifa Tian
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Fei Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China; and State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
Chengmin Shen
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Huairuo Zhang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Tianzhong Yang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Lihong Bao
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Xingjun Wang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Daotan Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Hong Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Xuejie Huang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Jianqi Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Liquan Chen
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Hongjun Gao
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Get access

Abstract

Large-area single-crystalline vanadium dioxide nanoflakes were first fabricated via a thermal reduction method in a tube furnace. The sample was characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The results show that VO2 nanoflakes are single-crystalline with a monoclinic structure. The VO2 nanoflakes have a width of 200–300 nm, a thickness of 50–100 nm, and a length up to 1–2 μm. It is found that single-crystalline VO2 nanoflakes show a novel and complicated 5–7-step Li-storage behavior for an insertion amount of <0.6 mol lithium per mol of VO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pan, Z.W., Dai, Z.R. Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 2001CrossRefGoogle ScholarPubMed
2Aggarwal, S., Monga, A.P., Perusse, S.R., Ramesh, R., Ballarotto, V., Williams, E.D., Chalamala, B.R., Wei, Y. Reuss, R.H.: Spontaneous ordering of oxide nanostructures. Science 287, 2235 2000CrossRefGoogle ScholarPubMed
3Wang, X. Li, Y.: Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880 2002CrossRefGoogle Scholar
4Liu, F., Zhang, H.R., Shen, C.M., Tian, J.F., Xiao, C.W., Cao, P.J., Li, J.Q. Gao, H.J.: Novel nanopyramid arrays of magnetite. Adv. Mater. 17, 1893 2005CrossRefGoogle Scholar
5Johannessen, S.C., Brisbois, R.G., Fischer, J.P., Grieco, P.A., Counterman, A.E. Clemmer, D.E.: A nano-scale barrel and cube: Transition metal-mediated self-assembly of CpCoCb-derived ligand scaffolds. J. Am. Chem. Soc. 123, 3818 2001CrossRefGoogle ScholarPubMed
6Morin, F.J.: Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34 1959CrossRefGoogle Scholar
7Rozgonyi, G.A. Hensler, D.H.: Structural and electrical properties of vanadium dioxide thin films. J. Vac. Sci. Technol. 5, 194 1968CrossRefGoogle Scholar
8Chudnovskiy, F., Luryi, S. Spivak, B.: The nano millenium, in Future Trends in Microelectronics edited by S. Luryi, J.M. Xu, and A. Zaslavsky Wiley-Interscience, New York 2002 148155Google Scholar
9Kim, H.T., Chae, B.G., Youn, D.H., Maeng, S.L., Kim, G., Kang, K.Y. Lim, Y.S.: Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices. New J. Phys. 6, 52 2004CrossRefGoogle Scholar
10Muraoka, Y., Ueda, Y. Hiroi, Z.: Large modification of the metal–insulator transition temperature in strained VO2 films grown on TiO2 substrates. J. Phys. Chem. Solids 63, 965 2002CrossRefGoogle Scholar
11Kannan, A.M. Manthiram, A.: Synthesis and electrochemical evaluation of high capacity nanostructured VO2 cathodes. Solid State Ionics 159, 265 2003CrossRefGoogle Scholar
12Blaauw, C., Leenhouts, F., van der Woude, F. Sawatzky, G.A.: The metal-non-metal transition in VO2: X-ray photoemission and resistivity measurements. J. Phys. C: Solid State Phys. 8, 459 1975CrossRefGoogle Scholar
13Fukuma, M., Zembutsu, S. Miyzzawa, S.: Preparation of VO2 thin film and its direct optical bit recording characteristics. Appl. Opt. 22, 265 1983CrossRefGoogle ScholarPubMed
14Guinneton, F., Valmalette, J-C. Gavarri, J.R.: Nanocrystalline vanadium dioxide: Synthesis and mid-infrared properties. Opt. Mater. 15, 111 2000CrossRefGoogle Scholar
15Lopez, R., Haynes, T.E., Boatner, L.A., Feldman, L.C. Haglund, R.F.: Temperature-controlled surface plasmon resonance in VO2 nanorods. Opt. Lett. 27, 1327 2002CrossRefGoogle Scholar
16Liu, J.F., Li, Q.H., Wang, T.H., Yu, D.P. Li, Y.D.: Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem., Int. Ed. Engl. 43, 5048 2004CrossRefGoogle ScholarPubMed
17Wu, X.C., Tao, Y.R., Dong, L., Wang, Z.H. Hu, Z.: Preparation of VO2 nanowires and their electric characterization. Mater. Res. Bull. 40, 315 2005CrossRefGoogle Scholar
18Gui, Z., Fan, R., Mo, W., Chen, X., Yang, L., Zhang, S., Hu, Y., Wang, Z. Fan, W.: Precursor morphology controlled formation of rutile VO2 nanorods and their self-assembled structure. Chem. Mater. 14, 5053 2002CrossRefGoogle Scholar
19Chen, X.Y., Wang, X., Wang, Z.H., Wan, J.X., Liu, J.W. Qian, Y.T.: An ethylene glycol reduction approach to metastable VO2 nanowire arrays. Nanotechnology 15, 1685 2004CrossRefGoogle Scholar
20Patzke, G.R., Krumeich, F. Nasper, R.: Oxidic nanotubes and nanorods: Anisotropic modules for a future nanotechnology. Angew. Chem., Int. Ed. Engl. 41, 2446 20023.0.CO;2-K>CrossRefGoogle ScholarPubMed
21Guinneton, F., Sauques, L., Valmalette, J.C., Cros, F. Gavarri, J.R.: Comparative study between nanocrystalline powder and thin film of vanadium dioxide VO2: Electrical and infrared properties. J. Phys. Chem. Solids 62, 1229 2001CrossRefGoogle Scholar
22Lopez, R., Boatner, L.A., Haynes, T.E., Feldman, L.C., Haglund, R.F. Jr.: Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix. J. Appl. Phys. 92, 4031 2002CrossRefGoogle Scholar
23Guiton, B.S., Gu, Q., Prieto, A.L., Gudiksen, M.S. Park, H.K.: Single-crystalline vanadium dioxide nanowires with rectangular cross sections. J. Am. Chem. Soc. 127, 498 2005CrossRefGoogle ScholarPubMed
24JCPDS No. 82-0661. International Center for Diffraction Data Newton Square, PA 1993Google Scholar
25Mendialdua, J., Casanova, R. Barbaux, Y.: XPS studies of V2O5, V6O13, VO2 and V2O3. J. Electron Spectrosc. Relat. Phenom. 71, 249 1995CrossRefGoogle Scholar
26Dai, Z.R., Pan, Z.W. Wang, Z.L.: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9 2003CrossRefGoogle Scholar
27Chen, W., Peng, J.F., Mai, L.Q., Yu, H. Qi, Y.Y.: Fabrication of novel vanadium dioxide nanorods as cathode material for rechargeable lithium batteries. Chem. Lett. (Jpn.) 33, 1366 2004CrossRefGoogle Scholar