Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T12:58:18.020Z Has data issue: false hasContentIssue false

A new orthorhombic boron phase B51.5–52 obtained by dehydrogenation of “α-tetragonal boron”

Published online by Cambridge University Press:  10 June 2016

Evgeny A. Ekimov*
Affiliation:
Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Russia
Yuliya B. Lebed
Affiliation:
Institute for Nuclear Research, Russian Academy of Sciences, 142190 Troitsk, Russia
Naoki Uemura
Affiliation:
ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Koun Shirai
Affiliation:
ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Tatiana B. Shatalova
Affiliation:
Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
Vladimir P. Sirotinkin
Affiliation:
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskii pr. 49, Moscow, 119991, Russia
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Recently, a new boron allotrope B52 with orthorhombic structure was theoretically predicted to be more stable than α-tetragonal boron B50. In experiments however, only tetragonal boron phases have been obtained so far. Here, we report for the first time on the preparation of orthorhombic boron phase of B52-type, space group Pnnn, a = 8.894 Å, b = 8.784 Å, c = 5.019 Å, by normal-pressure annealing of α-tetragonal boron, synthesized at high pressures by pyrolysis of decaborane, B10H14. We have investigated temperature-induced structure evolution and thermal desorption of boron samples, which allowed us to regard the structure of mother “α-tetragonal boron” as a boron-rich hydride with composition close to B51.5H7.7. In accordance with density-functional theory calculations, the most preferable sites of hydrogen placement in tetragonal unit cell are 8j and 4g; the tetragonal-to-orthorhombic transition takes place spontaneously upon complete dehydrogenation.

Type
Focus Section: Reinventing Boron Chemistry and Materials for the 21st Century
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hayami, W. and Otani, S.: First-principles study of the crystal and electronic structures of α-tetragonal boron. J. Solid State Chem. 183(7), 1521 (2010).Google Scholar
Zhu, Q., Oganov, A.R., Glass, C.W., and Stokes, H.T.: Constrained evolutionary algorithm for structure prediction of molecular crystals: Methodology and applications. Acta Crystallogr., Sect. B: Struct. Sci. 68, 215 (2012).Google Scholar
Hoard, J.L., Hughes, R.E., and Sands, D.E.: The structure of tetragonal boron1. J. Am. Chem. Soc. 80, 4507 (1958).CrossRefGoogle Scholar
Wang, Z., Shimizu, Y., Sasaki, T., Kawaguchi, K., Kimura, K., and Koshizaki, N.: Catalyst-free fabrication of single crystalline boron nanobelts by laser ablation. Chem. Phys. Lett. 368, 663 (2003).CrossRefGoogle Scholar
Ekimov, E.A. and Zibrov, I.P.: High-pressure high-temperature synthesis and structure of α-tetragonal boron. Sci. Technol. Adv. Mater. 12(5), 055009 (2011).Google Scholar
Qin, J., Irifune, T., Dekura, H., Ohfuji, H., Nishiyama, N., Lei, L., and Shinmei, T.: Phase relations in boron at pressures up to 18 GPa and temperatures up to 2200 °C. Phys. Rev. B: Condens. Matter Mater. Phys. 85(1), 014107 (2012).Google Scholar
Parakhonskiy, G., Dubrovinskaia, N., Bykova, E., Wirth, R., and Dubrovinsky, L.: High pressure synthesis and investigation of single crystals of metastable boron phases. High Pressure Res. 33(3), 673 (2013).Google Scholar
Kurakevych, O.O., Godec, Y., Hammouda, T., and Goujon, C.: Comparison of solid-state crystallization of boron polymorphs at ambient and high pressures. High Pressure Res. 32(1), 30 (2012).Google Scholar
Longuet-Higgins, H.C. and Roberts, M.V.: The electronic structure of an icosahedron of boron atoms. Proc. R. Soc. London, Ser. A 230(1180), 110 (1955).Google Scholar
Will, G. and Ploog, K.: Crystal structure of I-tetragonal boron. Nature 251, 406 (1974).Google Scholar
Ekimov, E.A., Zibrov, I.P., and Zoteev, A.V.: Preparation of boron microcrystals via high-pressure, high-temperature pyrolysis of decaborane, B10H14 . Inorg. Mater. 47(11), 1194 (2011).CrossRefGoogle Scholar
Dubrovinskaia, N., Wirth, R., Wosnitza, J., Papageorgiou, T., Braun, H.F., Miyajima, N., and Dubrovinsky, L.: An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure. Proc. Natl. Acad. Sci. 105, 11619 (2008).Google Scholar
Ekimov, E.A., Lebed, Y.B., Lyapin, S.G., and Borovikov, N.F.: Synthesis of boron–carbon phases with the α-tetragonal boron structure at 8–9 GPa. Inorg. Mater. 49(3). 247 (2013).Google Scholar
Solozhenko, V.L. and Kurakevych, O.O.: Chemical interaction in the B–BN system at high pressures and temperatures: Synthesis of novel boron subnitrides. J. Solid State Chem. 182(6), 1359 (2009).CrossRefGoogle Scholar
Latrigue, S. and Male, G.: Contribution to the study of tetragonal compounds in the boron carbon system. J. Mater. Sci. Lett. 7, 153 (1988).Google Scholar
Hayami, W. and Otani, S.: The role of surface energy in the growth of boron crystals. J. Phys. Chem. C 111(2), 688 (2007).Google Scholar
Uemura, N., Shirai, K., Eckert, H., and Kunstmann, J.: Structure, non-stoichiometry, and geometrical frustration of α-tetragonal boron. Phys. Rev. B: Condens. Matter Mater. Phys. 93, 104101 (2016).Google Scholar
Dekura, H., Shirai, K., and Yanase, A.: Metallization of α-boron by hydrogen doping. J. Phys.: Conf. Ser. 176(1), 012005 (2009).Google Scholar
Wang, P., Orimo, S., Tanabe, K., and Fujii, H.: Hydrogen in mechanically milled amorphous boron. J. Alloys Compd. 350 218 (2003).Google Scholar
Kodama, H., Oyaidzu, M., Sasaki, M., Kimura, H., Morimoto, Y., Oya, Y., Matsuyama, M., Sagara, A., Noda, N., and Okuno, K.: Studies on structural and chemical characterization for boron coating films deposited by PCVD. J. Nucl. Mater. 329, 889 (2004).Google Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A.: EXPO2013: A kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 46, 1231 (2013).Google Scholar
Rodríguez-Carvajal, J.: Recent developments of the program FULLPROF, in commission on powder diffraction (IUCr). Newsletter 26, 1219 (2001).Google Scholar
Roisnel, T. and Rodriguez-Carvajal, J.: WinPLOTR: A windows tool for powder diffraction patterns analysis. Mater. Sci. Forum 378–381, 118 (2001).Google Scholar
Kroumova, E., Perez-Mato, J.M., and Aroyo, M.I.: WYCKSPLIT: A computer program for determination of the relations of Wyckoff positions for a group-subgroup pair. J. Appl. Crystallogr. 31, 646 (1998).CrossRefGoogle Scholar
Aroyo, M.I., Perez-Mato, J.M., Orobengoa, D., Tasci, E., and de la Flor, G., and Kirov, A.: Crystallography online: Bilbao crystallographic server. Bulg. Chem. Commun. 43(2), 183 (2011).Google Scholar
Annen, A., Beckmann, R., and Jacob, W.: Deposition and characterization of dense and stable amorphous hydrogenated boron films at low substrate temperatures. J. Non-Cryst. Solids 209(3), 240 (1997).Google Scholar
Wang, S., Mao, W.L., and Autrey, T.: Bonding in boranes and their interaction with molecular hydrogen at extreme conditions. J. Chem. Phys. 131(14), 144508 (2009).Google Scholar
Brazhkin, V.V., Taniguichi, T., Akaishi, M., and Popova, S.V.: Fabrication of β-boron by chemical-reaction and melt-quenching methods at high pressures. J. Mater. Res. 19(6), 1643 (2004).CrossRefGoogle Scholar
Shirai, K., Sakuma, K., and Uemura, N.: Theoretical study of the structure of boron carbide B 13 C 2. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 064109 (2014).Google Scholar
Bylander, D.M. and Kleinman, L.: Structure of B13C2 . Phys. Rev. B: Condens. Matter Mater. Phys. 43, 1487 (1991).Google Scholar
Ektrarawong, A., Simak, S.I., Hultman, L., Birch, J., and Alling, B.: Configurational order-disorder induced metal-nonmetal transition in B 13 C 2 studied with first-principles superatom-special quasirandom structure method. Phys. Rev. B: Condens. Matter Mater. Phys. 92, 014202 (2015).Google Scholar