Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T00:58:55.658Z Has data issue: false hasContentIssue false

New methods of analyzing indentation experiments on very thin films

Published online by Cambridge University Press:  31 January 2011

Han Li
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Nicholas X. Randall
Affiliation:
CSM Instruments, Needham, Massachusetts 02494
Joost J. Vlassak*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Indentation experiments on thin films are analyzed by using a rigorous solution to model elastic substrate effects. Two cases are discussed: elastic indentations where film and substrate are anisotropic and elastoplastic indentations where significant material pileup occurs. We demonstrate that the elastic modulus of a thin film can be accurately measured in both cases, even if there is significant elastic mismatch between film and substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W.C., Pharr, G.M.An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, (6)1564 (1992)CrossRefGoogle Scholar
2.Oliver, W.C., Pharr, G.M.Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, (1)3 (2004)CrossRefGoogle Scholar
3.Fischer-Cripps, A.C.Nanoindentation 2nd ed. (Springer, Verlag 2004)CrossRefGoogle Scholar
4.Pharr, G.M.Measurement of mechanical properties by ultra-low-load indentation. Mater. Sci. Eng., A 253, (1–2)151 (1998)CrossRefGoogle Scholar
5.Randall, N.X., Julia-Schmutz, C., Soro, J.M.Combining scanning force microscopy with nanoindentation for more complete characterisation of bulk and coated materials. Surf. Coat. Technol. 108, (1–3)489 (1998)CrossRefGoogle Scholar
6.Randall, N.X.Direct measurement of residual contact area and volume during the nanoindentation of coated materials as an alternative method of calculating hardness. Philos. Mag. A 82, (0)1883 (2002)CrossRefGoogle Scholar
7.Lim, Y.Y., Chaudhri, M.M., Enomoto, Y.Accurate determination of the mechanical properties of thin aluminum films deposited on sapphire flats using nanoindentations. J. Mater. Res. 14, (6)2314 (1999)CrossRefGoogle Scholar
8.Sakai, M., Hakiri, N., Miyajima, T.Instrumented indentation microscope: A powerful tool for the mechanical characterization in microscales. J. Mater. Res. 21, (9)2298 (2006)CrossRefGoogle Scholar
9.Fang, L., Muhlstein, C.L., Collins, J.G., Romasco, A.L., Friedman, L.H.Continuous electrical in situ contact area measurement during instrumented indentation. J. Mater. Res. 23, (9)2480 (2008)CrossRefGoogle Scholar
10.Gao, H.J., Chiu, C.H., Lee, J.Elastic contact versus indentation modeling of multilayered materials. Int. J. Solids Struct. 29, (20)2471 (1992)Google Scholar
11.Saha, R., Nix, W.D.Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, (1)23 (2002)CrossRefGoogle Scholar
12.Chen, X., Vlassak, J.J.Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, (10)2974 (2001)CrossRefGoogle Scholar
13.Mencik, J., Munz, D., Quandt, E., Weppelmann, E.R., Swain, M.V.Determination of elastic modulus of thin layers using nanoindentation. J. Mater. Res. 12, (9)2475 (1997)CrossRefGoogle Scholar
14.Pharr, G.M., Oliver, W.C.Measurement of thin-film mechanical properties using nanoindentation. MRS Bull. 17, (7)28 (1992)CrossRefGoogle Scholar
15.King, R.B.Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, (12)1657 (1987)CrossRefGoogle Scholar
16.Yu, H.Y., Sanday, S.C., Rath, B.B.The effect of substrate on the elastic properties of films determined by the indentation test—Axisymmetrical Boussinesq problem. J. Mech. Phys. Solids 38, (6)745 (1990)CrossRefGoogle Scholar
17.Han, S.M., Saha, R., Nix, W.D.Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation. Acta Mater. 54, (6)1571 (2006)CrossRefGoogle Scholar
18.Tsui, T.Y., Pharr, G.M.Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14, (1)292 (1999)CrossRefGoogle Scholar
19.Li, H., Vlassak, J.J.Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation. J. Mater. Res. 24, (3)1114 (2009)CrossRefGoogle Scholar
20.Gao, Y.F., Xu, H.T., Oliver, W.C., Pharr, G.M.Effective elastic modulus of film-on-substrate systems under normal and tangential contact. J. Mech. Phys. Solids 56, (2)402 (2008)CrossRefGoogle Scholar
21.Bhattacharya, A.K., Nix, W.D.Analysis of elastic and plastic-deformation associated with indentation testing of thin-films on substrates. Int. J. Solids Struct. 24, (12)1287 (1988)CrossRefGoogle Scholar
22.Bull, S.J.Nano-indentation of coatings. J. Phys. D: Appl. Phys. 38, (24)R393 (2005)CrossRefGoogle Scholar
23.Fischer-Cripps, A.C.Review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200, (14–15)4153 (2006)CrossRefGoogle Scholar
24.Sneddon, I.N.The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965)CrossRefGoogle Scholar
25.Elgendi, S.E.Chebyshev solution of differential, integral and integro-differential equations. Comput. J. 12, (3)282 (1969)CrossRefGoogle Scholar
26.iMechanica, Harvard School of Engineering and Applied Scienceshttp://www.imechanica.org/node/4050Google Scholar
27.Pharr, G.W., Oliver, W.C., Brotzen, F.R.On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation. J. Mater. Res. 7, (3)613 (1992)CrossRefGoogle Scholar
28.Sakai, M.Substrate-affected indentation contact parameters of elastoplastic coating/substrate composites. J. Mater. Res. 24, (3)831 (2009)CrossRefGoogle Scholar
29.Vlassak, J.J., Nix, W.D.Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, (8)1223 (1994)CrossRefGoogle Scholar
30.Vlassak, J.J., Nix, W.D.Indentation modulus of elastically anisotropic half-spaces. Philos. Mag. A 67, (5)1045 (1993)CrossRefGoogle Scholar
31.Vlassak, J.J., Ciavarella, M., Barber, J.R., Wan, X.The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 51, (9)1701 (2003)CrossRefGoogle Scholar
32.Vlassak, J.J. New experimental techniques and analysis methods for the study of the mechanical properties of materials in small volumes. Ph.D. Thesis Stanford University 1994Google Scholar
33.Dietiker, M.Nanoindentation of single-crystalline gold thin films: Correlating hardness and the onset of plasticity. Acta Mater. 56, (15)3887 (2008)CrossRefGoogle Scholar
34.Gruber, P.A., Solenthaler, C., Arzt, E., Spolenak, R.Strong single-crystalline Au films tested by a new synchrotron technique. Acta Mater. 56, (8)1876 (2008)CrossRefGoogle Scholar
35.Pharr, G.M., Bolshakov, A.Understanding nanoindentation unloading curves. J. Mater. Res. 17, (10)2660 (2002)CrossRefGoogle Scholar
36.Nohava, J., Randall, N.X., Conte, N.Novel ultra nanoindentation method with extremely low thermal drift: Principle and experimental results. J. Mater. Res. 24, (3)873 (2009)CrossRefGoogle Scholar
37.Feng, G., Ngan, A.H.W.Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, (3)660 (2002)CrossRefGoogle Scholar
38.McElhaney, K.W., Vlassak, J.J., Nix, W.D.Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, (5)1300 (1998)CrossRefGoogle Scholar
39.Brantley, W.A.Calculated elastic-constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44, (1)534 (1973)CrossRefGoogle Scholar