Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T07:45:14.075Z Has data issue: false hasContentIssue false

New lead-free relaxors based on the K0.5Na0.5NbO3–SrTiO3 solid solution

Published online by Cambridge University Press:  03 March 2011

Marija Kosec
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Vid Bobnar
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Marko Hrovat
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Janez Bernard
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Barbara Malic*
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Janez Holc
Affiliation:
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
*
a)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

New lead-free relaxors have been produced from the K0.5Na0.5NbO3–SrTiO3 (KNN-STO) system. The solid solubility within the studied range of compositions (1 - x) K0.5Na0.5NbO3xSrTiO3 was observed for x up to 0.33. A pseudo-cubic perovskite structure was determined for x = 0.15 to 0.25. The high density and the uniform distribution of fine grains and pores were confirmed by the translucency of these ceramics. The 0.85KNN-0.15STO composition reaches the dielectric permittivity of above 3000 at room temperature. Dielectric spectroscopy measurements revealed that, as with lead-based complex perovskites, the cationic distribution disorder is reflected in relaxorlike properties, thus suggesting possible applications based on this environmentally friendly lead-free ceramic system.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jaffe, B., Cook, W.R.Jr., and Jaffe, H.: Piezoelectric Ceramics (Academic Press London, New York, 1971), pp. 185212Google Scholar
2Kosec, M. and Kolar, D.: On activated sintering and electrical properties of NaKNbO3. Mater. Res. Bull. 10, 335 (1975).CrossRefGoogle Scholar
3Malic, B., Jenko, D.,Bernard, J., Cilensek, J., and Kosec, M.: Synthesis and sintering of (K,Na)NbO3, in Solid-State Chemistry of Inorganic Materials IV,edited by Alario-Franco, M.A., Greenblatt, M., Rohrer, G., and Whittingham, M.S., (Mater. Res. Soc. Symp. Proc. 755, Warrendale, PA, 2003), p. 83.Google Scholar
4Ichiki, M., Zhang, L., Tanaka, M. and Maeda, R.: Electrical properties of piezoelectric sodium-potassium niobate. J. Eur. Ceram. Soc. 24, 1693 (2004).CrossRefGoogle Scholar
5Haertling, G.H. and Land, C.E.: Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications. J. Am. Ceram. Soc. 54, 1 (1971).CrossRefGoogle Scholar
6Smolenskii, G.A., Isupov, V.A., Agranovskaya, A.I. and Popov, S.N.: Ferroelectrics with diffuse phase transitions. Soviet Physics – Solid State 2, 2584 (1961).Google Scholar
7Swartz, S.L. and Shrout, T.R.: Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17, 1245 (1982).CrossRefGoogle Scholar
8Viehland, D., Jang, S.J., Cross, L.E. and Wuttig, M.: Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Phys. Rev. B 46, 8003 (1992).CrossRefGoogle ScholarPubMed
9Cross, L.E.: Relaxor ferroelectrics. Ferroelectrics. 76, 241 (1987).CrossRefGoogle Scholar
10Kutnjak, Z., Filipič, C., Pirc, R., Levstik, A., Farhi, R. and Marssi, M. El: Slow dynamics and ergodicity breaking in a lanthanum-modified lead zirconate titanate relaxor system. Phys. Rev. B 59, 294 (1999).CrossRefGoogle Scholar
11Sommer, R., Yushin, N.K. and van der Klink, J.J.: Polar metastability and an electric-field-induced phase transition in the disordered perovskite Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 48, 13230 (1993).CrossRefGoogle Scholar
12Scott, J.F. and de Araujo, C.A. Paz: Ferroelectric memories. Science 246, 1400 (1989).CrossRefGoogle ScholarPubMed
13Ravez, J. and Simon, A.: Some solid state chemistry aspects of lead-free relaxor ferroelectrics. J. Solid State Chem. 162, 260 (2001).CrossRefGoogle Scholar
14Ravez, J. and Simon, A.: New lead-free relaxor ceramics derived from BaTiO3 by cationic heterovalent subtitutions in the 12 C.N. crystallographic site. Phys. Stat. Solidi 178, 793 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
15Said, S. and Mercurio, J.P.: Relaxor behaviour of low lead and lead free ferroelectric ceramics of the Na0.5Bi0.5TiO3–PbTiO3 and Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 systems. J. Eur. Ceram. Soc. 21, 1333 (2001).CrossRefGoogle Scholar
16Li, T., Li, L. and Gui, Z.: Effect of starting powder-size of BaTiO3 on relaxor behaviour in 0.85BaTiO3–0.15 KNbO3. Ferroelectrics. 261, 113 (2001).CrossRefGoogle Scholar
17Raevski, I.P. and Prosandeev, S.A.: A new, lead free family of perovskites with a diffuse phase transition: NaNbO3- based solid solutions. J. Phys. Chem. Solid 63, 1939 (2002).CrossRefGoogle Scholar
18Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A3, 751 (1976).CrossRefGoogle Scholar
19 Phase Diagrams for Ceramists, edited by Reser, M.K. (Am. Ceram. Soc., Columbus, OH, 1969), No. 2334Google Scholar
20 JCPDS No. 71-2171. International Centre for Diffraction Data Newton Square, PA, 2002Google Scholar
21 JCPDS No. 86-0179. International Centre for Diffraction Data Newton Square, PA, 2002Google Scholar
22Bobnar, V., Vodopivec, B., Levstik, A., Kosec, M., Hilczer, B. and Zhang, Q.M.: Dielectric properties of relaxor-like vinylidene fluoride-trifluoroethylene-based electroactive polymers. Macromolecules 336, 4436 (2000).Google Scholar
23Vugmeister, B.E. and Rabitz, H.: Dynamics of interacting clusters and dielectric response in relaxor ferroelectrics. Phys. Rev. B 57, 7581 (1998).CrossRefGoogle Scholar