Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:58:12.392Z Has data issue: false hasContentIssue false

Nb effects on the structural and mechanical properties of TiAl alloy: Density-functional theory study

Published online by Cambridge University Press:  31 January 2011

Yongli Liu*
Affiliation:
Institute of Material Physics and Chemistry, Northeastern University, Shenyang 110004, China; and Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Shaoqing Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Hengqiang Ye
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Electron Microscope Laboratory, Peking University, Beijing 100871, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nb can improve the oxidation resistance of TiAl; however, the reported concomitant effects on the mechanical properties are controversial. Therefore, the effect of different Nb additions (0∼20.83 at.% Nb) on the lattice distortion as well as dislocation nucleation and mobility of TiAl were examined by density-functional theory calculations to solve the puzzle. The calculation of the formation energy and c/a ratio showed that Nb slightly decreases the phase stability and enhances the anisotropy. The variation of shearing energy barrier demonstrates an interesting staged strengthening effect of Nb on TiAl. Further analyses of the charge density difference and the partial density of states reveal that the physical origination is the electronic anisotropy, which is correlated with the Nb content and distribution.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Singh, S.R. and Howe, J.M.: Studies on the deformation behavior of interfaces in (γ+α2) titanium aluminide by high-resolution transmission electron microscopy. Philos. Mag. Lett. 65, 233 (1992).CrossRefGoogle Scholar
2.Gao, Y. and Zhu, J.: Stress-induced phase transformation in twophase TiAl intermetallic alloys. Scr. Metall. 28, 651 (1993).CrossRefGoogle Scholar
3.Zhang, Y.G. and Chaturvedi, M.C.: The effect of Widmanstättentype α2 precipitates on room temperature deformation and fracture behaviour of a γ-TiAl-based alloy. Mater. Sci. Eng., A 174, 45 (1994).CrossRefGoogle Scholar
4.Yang, S.J. and Nam, S.W.: Investigation of α2/γphase transformation mechanism under the interaction of dislocation with lamellar interface in primary creep of lamellar TiAl alloys. Mater. Sci. Eng., A 329/331, 898 (2002).CrossRefGoogle Scholar
5.Klassen, T., Oehring, M., and Bormann, R.: Microscopic mechanisms of metastable formation during ball milling of intermetallic TiAl phases. Acta Mater. 45, 3935 (1997).CrossRefGoogle Scholar
6.Korznikov, A.V., Dimitrov, O., Korznikova, G.F., Dallas, J.P., Quivy, A., Valiev, R.Z., and Mukherjee, A.: Nanocrystalline structure and phase transformation of the intermetallic compound TiAl processed by severe plastic deformation. Nanostruct. Mater. 11, 17 (1999).CrossRefGoogle Scholar
7.Zghal, S., Thomas, M., Naka, S., Finel, A., and Couret, A.: Phase transformations in TiAl based alloys. Acta Mater. 53, 2653 (2005).CrossRefGoogle Scholar
8.Ye, H.Q., He, L.L., Yu, R., and Peng, H.Y.: HREM observation and compositional study of microstructure and phase transformation in TiAl-based and Cu-Al-Ni alloys. J. Electron Microsc. (Tokyo) S48, 1099 (1999).Google Scholar
9.Lipsitt, H.A., Shechtman, D., and Schafrik, R.: The deformation and fracture of TiAl at elevated temperatures. Metall. Trans. A 6, 1991 (1975).CrossRefGoogle Scholar
10.Sastry, S.M.L. and Lipsitt, H.A.: Fatigue deformation of TiAl based alloys. Metall. Trans. A 8, 299 (1997).CrossRefGoogle Scholar
11.Zheng, Y., Zhao, L., and Tangri, K.: Microstructure evolution during heat treatment of a Cr bearing Ti3Al + TiAl alloy. Scr. Metall. Mater. 26, 219 (1992).CrossRefGoogle Scholar
12.Sabinash, C.M., Sastry, S.M.L. and Jerina, K.L.: The effect of alloying additions on the high temperature deformation characteristics of Ti-48Al (at.%) alloys. Scr. Metall. Mater. 32, 1381 (1995).CrossRefGoogle Scholar
13.Yamaguchi, M. and Inui, H.: Proceedings of the 1st International Symposium on Structural Intermetallics, in Structureal Intermetallics, edited by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS, Warrendale, PA, 1993), p.127.Google Scholar
14.Makino, M.: Structural design of intermetallics: Structural mapping, site preference of third alloying element and planar defects. Intermetallics 4, 11 (1996).CrossRefGoogle Scholar
15.Mohandas, E. and Beaven, P.A.: Site occupation of Nb, V, Mn and Cr in γ-TiAl. Scr. Metall. Mater. 25, 2023 (1991).CrossRefGoogle Scholar
16.Kawabata, T., Tamura, T., and Lzumi, O.: Microstructure/property relationships in titanium aluminides and alloys, in High-Temperature Ordered Intermetallic Alloys III, edited by Liu, C.T., Taub, A.I., Stoloff, N.S., and Koch, C.C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 330.Google Scholar
17.Zhang, W.J., Evangelista, E., Francesconi, L., and Chen, G.L.: Deformation microstructure of Nb-modified TiAl intermetallics Ti54A16Nb at ambient temperature. Mater. Sci. Eng., A 207, 202 (1996).CrossRefGoogle Scholar
18.Huang, S.C.: Titanium aluminum alloys modified by chromium and niobium and method of preparation, in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS, Warrendale, PA, 1993), p. 299.Google Scholar
19.Chen, G., Zhang, W., Wang, Y., Wang, J., and Sun, Z.: Ti-AL-Nb intermetallic alloys based on the ternary intermetallic compounds, in Structural Intermetallics, edited by Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.B., and Nathal, M.V. (TMS, Warrendale, PA, 1993), p. 318.Google Scholar
20.Hahn, Y.D. and Whang, S.H.: Dissociation of superdislocation at yield stress peak in L10 type Ti-Al-Nb compound, in High-Temperature Ordered Intermetallic Alloys _, edited by Liu, C.T., Taub, A.I., Stoloff, N.S., and Koch, C.C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 385.Google Scholar
21.Liu, Z.C., Lin, J.P., Li, S.J., and Chen, G.L.: Effect of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys. Intermetallics 10, 653 (2002).CrossRefGoogle Scholar
22.Liu, H.W., Yuan, Y., and Liu, Z.G.: TEM characterization of the precipitation reaction in Ti-48Al-10Nb alloy. Mater. Sci. Eng., A 412, 328 (1996).CrossRefGoogle Scholar
23.Paul, J.D.H., Appel, F., and Wagner, R.: The compression behavior of niobium alloyed γ-titanium aluminides. Acta Mater. 46, 1075 (1998).CrossRefGoogle Scholar
24.Li, Y.G. and Loretto, M.H.: Tensile properties and microstructure of Ti-48Al-2Nb and Ti-48Al-8Nb. Phys. Status Solidi A 150, 271 (1995).CrossRefGoogle Scholar
25.Erschbaumer, H., Podloucky, R., Temnitschka, G., and Wagner, R.: Atomic modeling of Nb, V, Cr, and Mn substitutions in γ-TiAl 1: C/a ratio and site preference. Intermetallics 1, 99 (1993).CrossRefGoogle Scholar
26.Woodward, C. and Kajihara, S.: Site preferences and formation energies of substitutional Si, Nb, Mo, Ta, and W solid solutions in L10 Ti-Al. Phys. Rev. B: Condens. Matter 57, 13459 (1998).CrossRefGoogle Scholar
27.Morinaga, A.M., Asito, J., Yukawa, N., and Adachi, N.: Electronic effect on the ductility of alloyed TiAl compound. Acta Metall. Mater. 38, 25 (1990).CrossRefGoogle Scholar
28.Hao, Y.L., Xu, D.S., Cui, Y.Y., Yang, R., and Li, D.: The site occupancies of alloying elements in TiAl and Ti3Al alloys. Acta Mater. 47, 1129 (1999).CrossRefGoogle Scholar
29.Song, Y., Xu, D.S., Yang, R., Li, D., and Hu, Z.Q.: Theoretical investigation of ductilizing effects of alloying elements on TiAl. Intermetallics 6, 157 (1998).CrossRefGoogle Scholar
30.Vitek, V.: Intrinsic stacking faults in body-centered cubic crystals. Philos. Mag. 18, 773 (1968).CrossRefGoogle Scholar
31.Rice, J.R.: Dislocation nucleation from a crack tip: An analysis based on the peierls concept. J. Mech. Phys. Solids 40, 239 (1992).CrossRefGoogle Scholar
32.Rice, J.R. and Thomson, R.: Ductile versus brittle behavior of crystal. Philos. Mag. 29, 73 (1974).CrossRefGoogle Scholar
33.Nouneh, K., Reshak, A.H., Auluck, S., Kityk, I.V., Viennois, R., Benet, S., and Charar, S.: Band energy and thermoelectricity of filled skutterudites LaFe4Sb12 and CeFe4Sb12. J. Alloys Compd. 437, 39 (2007).CrossRefGoogle Scholar
34.Datta, A., Waghmare, U.V., and Ramamurty, U.: Structure and stacking faults in layered Mg–Zn–Y alloys: A first-principles study. Acta Mater. 56, 2531 (2008).CrossRefGoogle Scholar
35.Ho, G.S., Ligne‘res, V.L., and Carter, E.A.: Introducing PROFESS: A new program for orbital-free density-functional theory calculations. Comput. Phys. Commun. 179, 839 (2008).CrossRefGoogle Scholar
36.Mosey, N.J. and Carter, E.A.: Ab initio LDA+U prediction of the tensile properties of chromia across multiple length scales. J. Mech. Phys. Solids 57, 287 (2009).CrossRefGoogle Scholar
37.Payne, M.C., Teter, M.P., Allan, D.D., Arias, D.A., and Johannopoulos, J.D.: Iterative minimization techniques for ab initio total energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).CrossRefGoogle Scholar
38.HoheBeerg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B: Condens. Matter 136, 864 (1964).CrossRefGoogle Scholar
39.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A: At. Mol. Opt. Phys. 140, 1133 (1965).CrossRefGoogle Scholar
40.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
41.Kresse, G. and Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1999).CrossRefGoogle Scholar
42.Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter 13, 5188 (1976).CrossRefGoogle Scholar
43.Liu, Y.L., Liu, L.M., Wang, S.Q., and Ye, H.Q.: First-principles study of shear deformation in TiAl and Ti3Al. Intermetallics 15, 428 (2007).CrossRefGoogle Scholar
44.Liu, Y.L., Liu, L.M., Wang, S.Q., and Ye, H.Q.: First-principles study of shear deformation in TiAl alloys. J. Alloys Compd. 440, 287 (2007).CrossRefGoogle Scholar
45.Pearson, W.B.: A Handbook of Lattice Spacing and Structure of Metals and Alloys (Pergamon Press, Oxford, 1989), pp. 12.Google Scholar
46.Asta, M., de Fontaine, D., and van Schilfgaarde, M.: First-principles study of phase stability of Ti-Al intermetallic compounds. J. Mater. Res. 8, 2554 (1993).CrossRefGoogle Scholar
47.Greeberg, B.F., Anisimov, V.I., Gornostinow, Y.N., and Taluts, G.G.: Possible factors affecting the brittleness of the intermetallic compound TiAl. Scr. Metall. 22, 859 (1988).CrossRefGoogle Scholar