Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T03:07:37.090Z Has data issue: false hasContentIssue false

Nanostructured Yttria Powders Via Gel Combustion

Published online by Cambridge University Press:  31 January 2011

Sukumar Roy
Affiliation:
Max-Planck-Institut für Metallforschung, Universitäat Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, 70569 Stuttgart, Germany
Wolfgang Sigmund
Affiliation:
Max-Planck-Institut für Metallforschung, Universitäat Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, 70569 Stuttgart, Germany
Fritz Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung, Universitäat Stuttgart, Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, 70569 Stuttgart, Germany
Get access

Abstract

Nanostructured yttria powders were prepared by a gel combustion technique. The technique involves exothermic decomposition of an aqueous citrate-nitrate gel. The decomposition is based on a thermally induced anionic redox reaction. A variety of yttria powders with different agglomerate structures can be made by altering the citrate-nitrate ratio γ. The gel with γ = 0.098 in situ yields nanostructured yttria powder at 258 °C that is porous and agglomerated with an average of 25 nm primary particles. Its specific surface area is 55 m2/g. The decomposition of the gels was investigated by simultaneous thermogravimetry analysis (TGA) and differential thermal analysis (DTA) experiments. The produced ashes and calcined powders are characterized by x-ray diffraction (XRD), ir spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer, Emmett, and Teller (BET) analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Trudeau, M.L. and Ying, J.Y., Nanostruct. Mater. 7 (1, 2), 245258 (1996).Google Scholar
2.Saito, Y., Kawabata, K., and Okuda, M., J. Phys. Chem. 99, 1607616079 (1995).CrossRefGoogle Scholar
3.Ohkohchi, M., Zhao, X., Wang, M., and Ando, Y., Fullerene Sci. Technol. 4 (5), 977– (1996).CrossRefGoogle Scholar
4.Ribot, F., Sanchez, C., and Livage, J., in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA, 1988), pp. 139144.Google Scholar
5.Hubert-Pfalzgraf, G. L., Poncelet, O., and Daran, J.C., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), pp. 7378.Google Scholar
6.Hours, T., Bergez, P., Charpin, J., and Larbot, A., Am. Ceram. Soc. Bull. 71 (2), 200203 (1992).Google Scholar
7.Celikkaya, A. and Akinc, M., J. Coll. Interf. Sci. 122, 110118 (1988).Google Scholar
8.Aiken, B., Hsu, W. P., and Matijević, E., J. Am. Ceram. Soc. 71, 845853 (1988).Google Scholar
9.Sordelet, D. and Akinc, M., J. Coll. Interf. Sci. 122, 4759 (1988).CrossRefGoogle Scholar
10.Micheli, A. L., Ceramic Transactions, edited by Messing, G. L., Fuller, E. R. Jr, and Hausner, H. (The American Ceramic Society, Westerville, OH, 1988), Vol. 1, Part A, pp. 102109.Google Scholar
11.McCluskey, P. H., Fischman, G. S., and Snyder, R. L., Proc. 2nd Int. Conf. on Ceramic Powder Processing Science, edited by Hausner, H., Messing, G. L., and Hirano, S., 111119 (1989).Google Scholar
12.Djuricić, B., Kolar, D., and Memić, M., J. Euro. Ceram. Soc. 9, 7582 (1992).Google Scholar
13.Kobayashi, M., J. Mater. Sci. Lett. 11 (11), 767768 (1992).CrossRefGoogle Scholar
14.Marcilly, , Courty, P., and Delmon, B., J. Am. Ceram. Soc. 53 [1], 5657 (1970).CrossRefGoogle Scholar
15.Baythoun, S. G. and Sale, F. R., J. Mater. Sci. 17, 27572769 (1982).CrossRefGoogle Scholar
16.Chick, L.A., Pederson, L. R., Maupin, G. D., Bates, J.L., Thomas, L. E., and Exarhos, G.J., Mater. Lett. 10 (1, 2) 612 (1990).CrossRefGoogle Scholar
17.Manoharan, S. S. and Patil, K. C., J. Am. Ceram. Soc. 75 (4), 10121015 (1992).CrossRefGoogle Scholar
18.Roy, S., Das Sharma, A., Roy, S. N., and Maiti, H.S., J. Mater. Res. 8 (11), 27612766 (1993).Google Scholar
19.Chakraborty, A., Devi, P. S., Roy, S., and Maiti, H. S., J. Mater. Res. 9, 986991 (1994).CrossRefGoogle Scholar
20.Jain, S. R., Adiga, K.C., and Pai Verneker, V. R., Combust. Flame 40, 71 (1981).Google Scholar
21.Ogden, J. S. and Williams, S. J., J. Chem. Soc. Dalton Trans., 456462 (1981).CrossRefGoogle Scholar
22.Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (Wiley-Interscience Publication, New York, 1986).Google Scholar
23. Infrared spectra of a commercial grade hydrated Y2(CO3)3 was also considered for assigning those bands.Google Scholar
24.Ferraro, J. R. and Walker, A., J. Chem. Phys. 42 (4), 12731285 (1965).Google Scholar
25.Walker, A. and Ferraro, J. R., J. Chem. Phys. 43 (8), 26892692 (1965).CrossRefGoogle Scholar
26.Hester, R. E. and Krishnan, K., J. Chem. Phys. 47 (5), 17471755 (1967).CrossRefGoogle Scholar