Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T22:56:45.987Z Has data issue: false hasContentIssue false

Nanostructure of the nanopores in anodic aluminum oxide films used as template to fabricate Ag nanowires

Published online by Cambridge University Press:  31 January 2011

David L. Carroll*
Affiliation:
Center for Nanotechnology and Molecular Materials and Department of Physics, Wake Forest University, Winston Salem, North Carolina 27109
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Well-ordered nanoporous anodic aluminum oxide (AAO) templates have been prepared on aluminum substrates by a two-step anodization process. A voltage-controlled branching method was successfully used to thin the barrier layer of the AAO template. The nanostructures of the pores, the branched subpores, and the barrier layer in the AAO template were studied in association with the anodization process and barrier layer thinning methods. Results demonstrate the voltage-controlled branching method is a facile and effective way to thin the barrier layer. Uniform silver nanowires can be easily fabricated using alternating current (ac) electrodeposition into the pores of AAO after redressing the barrier layer.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pacholski, C., Kornowski, A., and Weller, H.: Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem., Int. Ed. Engl. 41, 1188 (2002).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
2.Martin, B.R., Dermody, D.J., Reiss, B.D., Fang, M., Lyon, L.A., Natan, M.J., and Mallouk, T.E.: Orthogonal self-assembly on colloidal gold-platinum nanorods. Adv. Mater. 11, 1021 (1999).3.0.CO;2-S>CrossRefGoogle Scholar
3.Inguanta, R., Piazza, S., and Sunseri, C.: Influence of electrodepo-sition techniques on Ni nanostructures. Electrochim. Acta 53, 5766 (2008).CrossRefGoogle Scholar
4.Li, Y., Xu, D., Zhang, Q., Chen, D., Huang, F., Xu, Y., Guo, G., and Gu, Z.: Preparation of cadmium sulfide nanowire arrays in anodic aluminum oxide templates. Chem. Mater. 11(12), 3433 (1999).CrossRefGoogle Scholar
5.Chen, J.T., Zhang, M., and Russell, T.P.: Instabilities in nanoporous media. Nano Lett. 7(1), 183 (2007).CrossRefGoogle ScholarPubMed
6.Wen, Z.H., Wang, Q., and Li, J.H.: Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts. Adv. Fund. Mater. 18, 959 (2008).CrossRefGoogle Scholar
7.Liu, L., Zhou, W., Xie, S., Song, L., Luo, S., Liu, D., Shen, J., Zhang, Z., Xiang, Y., Ma, W., Ren, Y., Wang, C., and Wang, G.: Highly efficient direct electrodeposition of Co–Cu alloy nano-tubes in an anodic alumina template. J. Phys. Chern. C 112(7), 2256 (2008).CrossRefGoogle Scholar
8.Masuda, H. and Fukuda, K.: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).CrossRefGoogle ScholarPubMed
9.Li, A.P., Müller, F., Birner, A., Nielsch, K., and Gösele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. J. Appl. Phys. 84, 6023 (1998).CrossRefGoogle Scholar
10.Lee, W., Alexe, M., Nielsch, K., and Gösele, U.: Metal membranes with hierarchically organized nanotube arrays. Chern. Mater. 17(3), 3325 (2005).CrossRefGoogle Scholar
11.Chik, H. and Xu, J.M.: Nanometric superlattices: Non-lithographic fabrication, materials, and prospects. Mater. Sci. Eng., R 43, 103 (2004).CrossRefGoogle Scholar
12.O'Sullivan, J.P. and Wood, G.C.: The motphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. London, Ser. A 317, 511 (1970).Google Scholar
13.Keller, F., Hunter, M.S., and Robinson, D.L.: Structural features of anodic oxide films on aluminum. J. Electrochem. Soc. 100, 411 (1953).CrossRefGoogle Scholar
14.Meng, G.W., Cao, A.Y., Cheng, J.Y., Vijayaraghavan, A., Jung, Y.J., Shima, M., and Ajayan, P.M.: Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template. J. Appl. Phys. 97, 064303 (2005).CrossRefGoogle Scholar
15.Jeong, J.H., Kim, S.H., Choi, Y., and Kim, S.S.: Microstructure of nanopores in AAO templates favoring the growth of nickel nano-wires by electrodeposition. Phys. Status Solidi C 4(12), 4429 (2007).CrossRefGoogle Scholar
16.Ho, A.Y.Y., Gao, H., Lam, Y.C., and Rodríguez, I.: Controlled fabrication of multitiered three-dimensional nanostructures in porous alumina. Adv. Funct. Mater. 18, 2057 (2008).CrossRefGoogle Scholar
17.Jessensky, O., Müller, F., and Gösele, U.: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72(10), 1173 (1998).CrossRefGoogle Scholar
18.Gelves, G.A., Murakami, Z.T.M., Krantz, M.J., and Haber, J.A.: Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. J. Mater. Chem. 16, 3075 (2006).CrossRefGoogle Scholar
19.Wang, H.H., Han, C.Y., Willing, G.A., and Xiao, Z.L.: Nanowire and nanotube syntheses through self-assembled nanoporous AAO templates, in Self-Assembled Nanostructured Materials, edited by Lu, Y., Brinker, J., Antonietti, M., and Bai, C. (Mater. Res. Soc. Symp. Proc. 775, Warrendale, PA, 2003), P4.8, pp. 481486.Google Scholar