Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T13:08:53.221Z Has data issue: false hasContentIssue false

Nanostructural study of sol-gel-derived zirconium oxides

Published online by Cambridge University Press:  31 January 2011

Mariía C. Caracoche
Affiliation:
Departamento de Física, FCE, Universidad Nacional de La Plata, 1900 La Plata, Argentina
Patricia C. Rivas
Affiliation:
Departamento de Física, FCE, Universidad Nacional de La Plata, 1900 La Plata, Argentina
Mario M. Cervera
Affiliation:
Departamento de Física, FCE, Universidad Nacional de La Plata, 1900 La Plata, Argentina
Ricardo Caruso
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIA, IFIR, UNR, 2000 Rosario, Argentina
Edgardo Benavídez
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIA, IFIR, UNR, 2000 Rosario, Argentina
Oscar de Sanctis
Affiliation:
Laboratorio de Materiales Cerámicos, FCEIA, IFIR, UNR, 2000 Rosario, Argentina
Sergio R. Mintzer
Affiliation:
Departamento de Materiales, Gerencia de Desarrollo, Comisión Nacional de Energía Atómica, 1429 Buenos Aires, Argentina
Get access

Abstract

Two sol-gel derived zirconia powders were prepared at pH = 0.5 and pH = 5.5. They were investigated as a function of temperature using mainly perturbed angular correlation spectroscopy. The aim was to elucidate the relationship between the nanoscopic configurations around Zr4+ ions and the morphology and structure of the powders. The highly porous material resulting from the solution at higher pH could be described mainly by defective and disordered, very hydrolyzed tetragonal arrays. As temperature increased, the amount of these arrays decreased while they became increasingly asymmetric, thus suggesting their superficial localization. The easy removal of hydroxyls led to the early appearance of the monoclinic phase. The gel obtained from the precursor at pH = 0.5 was entirely described by configurations still involving organic residues. After their calcination, the powder underwent a well-defined two-step hydroxyl removal thermal process leading to the crystallization of the tetragonal and the monoclinic phases. The thermal stability of the metastable tetragonal phase in the investigated powders seems to be controlled by their different capability to absorb oxygen.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Garvie, R.C., J. Phys. Chem. 82, 218 (1978).CrossRefGoogle Scholar
2.Wu, F. and Yu, S., J. Mater. Sci. 25, 970 (1990).CrossRefGoogle Scholar
3.Kountouros, P. and Petzow, G., in Science and Technology of Zirconia V, edited by Baldwal, S.P.S., Bannister, M.J., and Hannink, R.H.J. (Technomic Publishing Company, Lancaster, PA, 1993), p. 30.Google Scholar
4.Gómez, R., López, T., Bokhimi, X., Muñoz, E., Boldú, J.L., and Novaro, O., J. Sol-Gel Sci. Technol. 11, 309 (1988).CrossRefGoogle Scholar
5.Stöcker, C. and Baiker, A., J. Non-Cryst. Solids. 223, 165 (1998).CrossRefGoogle Scholar
6.Yoldas, B.E., J. Mater. Sci. 21, 1080 (1986).CrossRefGoogle Scholar
7.Nabavi, M., Doeuff, S., Sanchez, C., and Livage, J., J. Non Cryst. Solids. 121, 31 (1990).CrossRefGoogle Scholar
8.Sanchez, C., Livage, J., Henry, M., and Babonneau, F., J. Non Cryst. Solids. 100, 65 (1988).CrossRefGoogle Scholar
9.Srinivasan, R., Harris, M., Simpson, S.F., Angelis, R.J. De, and Burtron, B.H., J. Mater. Res. 3, 787 (1988).CrossRefGoogle Scholar
10.Davis, B.H., J. Am. Ceram. Soc. 67, C168 (1984).Google Scholar
11.Debsikdar, J.C., J. Non Cryst. Solids. 87, 343 (1986).CrossRefGoogle Scholar
12.Caracoche, M.C., Rivas, P.C., Caruso, R., Benavídez, E., Sanctis, O. de, Cervera, M.M., and Escobar, M.E., J. Am. Ceram. Soc. 83, 377 (2000).CrossRefGoogle Scholar
13.Baudry, A., Boyer, P., and Oliveira, A.L. de, Hyperfine Interactions. 10, 1003 (1981).CrossRefGoogle Scholar
14.Gardner, J.A., Jaeger, H., Su, H.T., Warnes, W.H., and Haygarth, J.C., Physica B150, 223 (1988).Google Scholar
15.Caruso, R., Benavídez, E., Sanctis, O. de, Caracoche, M.C., Rivas, P.C., Cervera, M.M., Caneiro, A., and Serquis, A., J. Mater. Res. 12, 2594 (1997).CrossRefGoogle Scholar
16.Klug, H.P. and Alexander, L.E., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley and Sons, New York, 1974), Ch. 9.Google Scholar