Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T11:58:28.678Z Has data issue: false hasContentIssue false

Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates

Published online by Cambridge University Press:  01 February 2016

Tuna Demirbaş
Affiliation:
Department of Mechanical Engineering and UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
Mehmet Z. Baykara*
Affiliation:
Department of Mechanical Engineering and UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We present a comprehensive nanoscale tribological characterization of single-layer graphene grown by chemical vapor deposition (CVD) and transferred onto silicon oxide (SiO2) substrates. Specifically, the nanotribological properties of graphene samples are studied via atomic force microscopy (AFM) under ambient conditions using calibrated probes, by measuring the evolution of friction force with increasing normal load. The effect of using different probes and post-transfer cleaning procedures on frictional behavior is evaluated. A new method of quantifying lubrication performance based on measured friction coefficient ratios of graphene and SiO2 is introduced. A comparison of lubrication properties with mechanically-exfoliated graphene is performed. Results indicate that CVD-grown graphene constitutes a very good solid lubricant on SiO2, reducing friction coefficients by ∼90% for all investigated samples. Finally, the effect of wrinkles associated with CVD-grown graphene on measured friction values is quantitatively analyzed, with results revealing a substantial increase in friction on these structural defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Urbakh, M., Klafter, J., Gourdon, D., and Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525 (2004).Google Scholar
Hsu, S.M.: Nano-lubrication: Concept and design. Tribol. Int. 37, 537 (2004).Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).Google Scholar
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).Google Scholar
Berman, D., Erdemir, A., and Sumant, A.V.: Graphene: A new emerging lubricant. Mater. Today 17, 31 (2014).CrossRefGoogle Scholar
Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., Horn, K., and Bennewitz, R.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 086102 (2009).CrossRefGoogle ScholarPubMed
Filleter, T. and Bennewitz, R.: Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Phys. Rev. B 81, 155412 (2010).CrossRefGoogle Scholar
Lee, C., Li, Q., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., and Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 76 (2010).Google Scholar
Kim, K-S., Lee, H-J., Lee, C., Lee, S-K., Jang, H., Ahn, J-H., Kim, J-H., and Lee, H-J.: Chemical vapor deposition-grown graphene: The thinnest solid lubricant. ACS Nano 5, 5107 (2011).CrossRefGoogle ScholarPubMed
Shin, Y.J., Stromberg, R., Nay, R., Huang, H., Wee, A.T.S., Yang, H., and Bhatia, C.S.: Frictional characteristics of exfoliated and epitaxial graphene. Carbon 49, 4070 (2011).Google Scholar
Fessler, G., Eren, B., Gysin, U., Glatzel, T., and Meyer, E.: Friction force microscopy studies on SiO2 supported pristine and hydrogenated graphene. Appl. Phys. Lett. 104, 041910 (2014).Google Scholar
Egberts, P., Han, G.H., Liu, X.Z., Johnson, A.T.C., and Carpick, R.W.: Frictional behavior of atomically thin sheets: Hexagonal-shaped graphene islands grown on copper by chemical vapor deposition. ACS Nano 8, 5010 (2014).CrossRefGoogle ScholarPubMed
Paolicelli, G., Tripathi, M., Corradini, V., Candini, A., and Valeri, S.: Nanoscale frictional behavior of graphene on SiO2 and Ni(111) substrates. Nanotechnology 26, 055703 (2015).Google Scholar
Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 3087 (2009).Google Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).Google Scholar
Her, M., Beams, R., and Novotny, L.: Graphene transfer with reduced residue. Phys. Lett. A 377, 1455 (2013).Google Scholar
Pirkle, A., Chan, J., Venugopal, A., Hinojos, D., Magnuson, C.W., McDonnell, S., Colombo, L., Vogel, E.M., Ruoff, R.S., and Wallace, R.M.: The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011).Google Scholar
Hu, B., Wei, Z., Ago, H., Jin, Y., Xia, M., Luo, Z., Pan, Q., and Liu, Y.: Effects of substrate and transfer on CVD-grown graphene over sapphire-induced Cu films. Sci. China: Chem. 57, 895 (2014).Google Scholar
Dan, Y., Lu, Y., Kybert, N.J., Luo, Z., and Johnson, A.T.C.: Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472 (2009).Google Scholar
Gong, C., Floresca, H.C., Hinojos, D., McDonnell, S., Qin, X., Hao, Y., Jandhyala, S., Mordi, G., Kim, J., Colombo, L., Ruoff, R.S., Kim, M.J., Cho, K., Wallace, R.M., and Chabal, Y.J.: Rapid selective etching of PMMA residues from transferred graphene by carbon dioxide. J. Phys. Chem. C 117, 23000 (2013).Google Scholar
Jang, C.W., Kim, J.H., Kim, J.M., Shin, D.H., Kim, S., and Choi, S-H.: Rapid-thermal-annealing surface treatment for restoring the intrinsic properties of graphene field-effect transistors. Nanotechnology 24, 405301 (2013).Google Scholar
Skakalova, V. and Kaiser, A.B.: Graphene: Properties, Preparation, Characterisation and Devices, 1st ed. (Woodhead Publishing, Cambridge, England, 2014); pp. 279287.Google Scholar
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., and Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).Google Scholar
Mate, C.M., McClelland, G.M., Erlandsson, R., and Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942 (1987).Google Scholar
Sader, J.E., Chon, J.W.M., and Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967 (1999).Google Scholar
Varenberg, M., Etsion, I., and Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74, 3362 (2003).CrossRefGoogle Scholar
Schwarz, U.D., Koster, P., and Wiesendanger, R.: Quantitative analysis of lateral force microscopy experiments. Rev. Sci. Instrum. 67, 2560 (1996).Google Scholar
Celebi, K.: Chemical Vapor Deposition of Graphene on Copper (ETH Zurich, Zurich, 2013); p. 24.Google Scholar
Berciaud, S., Ryu, S., Brus, L.E., and Heinz, T.F.: Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9, 346 (2009).CrossRefGoogle ScholarPubMed
Chung, T.F., Shen, T., Cao, H., Jauregui, L.A., Wu, W., Yu, Q., Newell, D., and Chen, Y.P.: Synthetic graphene grown by chemical vapor deposition on copper foils. Int. J. Mod. Phys. B 27, 1341002 (2013).Google Scholar
Sundararajan, S. and Bhushan, B.: Topography-induced contributions to friction forces measured using an atomic force/friction force microscope. J. Appl. Phys. 88, 4825 (2000).Google Scholar
Szlufarska, I., Chandross, M., and Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D: Appl. Phys. 41, 123001 (2008).Google Scholar
Li, Q., Liu, X-Z., Kim, S-P., Shenoy, V.B., Sheehan, P.E., Robinson, J.T., and Carpick, R.W.: Fluorination of graphene enhances friction due to increased corrugation. Nano Lett. 14, 5212 (2014).Google Scholar