Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T12:55:07.210Z Has data issue: false hasContentIssue false

Nanoporous zero-valent iron

Published online by Cambridge University Press:  01 December 2005

Jiasheng Cao
Affiliation:
Center for Advanced Materials and Nanotechnology, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Patrick Clasen
Affiliation:
Center for Advanced Materials and Nanotechnology, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
Wei-xian Zhang*
Affiliation:
Center for Advanced Materials and Nanotechnology, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, Pennsylvania 18015
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hollow and nanoporous particles of zero-valent iron (ZVI) were prepared with template-directed synthesis. Polymer resin beads (0.4 mm diameter) were coated with nanoscale iron particles by reductive precipitation of ferrous iron [Fe(II)] with sodium borohydride. The resin was calcinated at 400 °C to produce hollow and nanoporous iron spheres. The nanoporous iron oxides were then reduced to metallic iron by hydrogen at 500 °C. Scanning electron microscope images of the reduced iron spheres showed that the particles were hollow. The shell thickness was approximately 5 μm and highly porous. Brunauer–Emmett–Teller specific surface area was 2100 m2/kg. In comparison, the theoretical specific surface area of solid iron particles of the same size is just 1.9 m2/kg. Batch tests showed that the surface area normalized reactivity of the porous particles were 14–31% higher than microscale iron particles with similar surface areas for the transformation of hexavalent chromium [Cr(VI)], azo dye Orange II {4-[(2-hydroxyl-1-naphthalenyl)azo]-benzenesulfonic acid monosodium}, and trichloroethene. The combined performance enhancement (larger surface area and higher surface activity) is significant (>1200 times).

Type
Articles—Energy and The Environment Special Section
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gillham, R.W. and O’Hannesin, S.F.: Enhanced degradation of halogenated alipahtics by zero-valent iron. Ground Water 32, 958 (1994).CrossRefGoogle Scholar
2.Starr, R.C. and Cherry, J.A.: In-situ remediation of contaminated ground-water: The funnel and gate system. Ground Water 32, 465 (1994).Google Scholar
3.LaGrega, M.D., Buckingham, P. and Evans, J.C.: Hazardous Waste Management, 2nd ed. (McGraw-Hill, New York, 2001).Google Scholar
4.Gilbert, O., de Pablo, J., Cortina, J.L. and Ayora, C.: Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment. J. Chem. Technol. Biot. 78, 489 (2003).CrossRefGoogle Scholar
5.Appleton, E.L.: A nickel-iron wall against contaminated groundwater. Environ. Sci. Technol. 30, 536A (1996).Google Scholar
6.Barcelona, M.J. and Xie, G.: In situ lifetimes and kinetics of a reductive whey barrier and an oxidative ORC barrier in the subsurface. Environ. Sci. Technol. 35, 3378 (2001).CrossRefGoogle Scholar
7.Scherer, M.M., Richter, S., Valentine, R.L. and Alvarez, P.J.: Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Environ. Sci. Technol. 30, 363 (2000).CrossRefGoogle Scholar
8.Puls, R.W., Blowes, D.W. and Gillham, R.W.: Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. J. Hazard. Mater. 68, 109 (1999).Google Scholar
9.Wang, C. and Zhang, W.X.: Nanoscale iron particles for reductive dechlorination of PCE and PCBs. Environ. Sci. Technol. 31, 2154 (1997).CrossRefGoogle Scholar
10.Lien, H. and Zhang, W.X.: Complete dechlorination of chlorinated ethenes with nanoparticles. Colloids Surf. A 191, 97 (2001).Google Scholar
11.Arnold, W.A. and Roberts, A.L.: Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 34, 1794 (2000).CrossRefGoogle Scholar
12.Siantar, D.P., Schreier, C.G., Chou, C.S. and Reinhard, M.: Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res. 30, 2315 (1996).CrossRefGoogle Scholar
13.Xu, Y. and Zhang, W.X.: Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind. Eng. Chem. Res. 39, 2238 (2000).CrossRefGoogle Scholar
14.Furukawa, Y., Kim, J-W., Watkins, J. and Wilkin, R.T.: Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ. Sci. Technol. 36, 5469 (2002).CrossRefGoogle ScholarPubMed
15.Elliott, D.W. and Zhang, W.X.: Field assessment of nanoparticles for groundwater treatment. Environ. Sci. Technol. 35, 4922 (2001).CrossRefGoogle ScholarPubMed
16.Morrison, S.J., Metzler, D.R. and Carpenter, C.E.: Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zerovalent iron. Environ. Sci. Technol. 35, 385 (2001).CrossRefGoogle Scholar
17.Cheng, I.F., Muftikian, R., Fernando, Q. and Korte, N.: Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35, 2689 (1997).Google Scholar
18.Weber, E.J.: Iron-mediated reductive transformations: Investigation of reaction mechanism. Environ. Sci. Technol. 30, 716 (1996).CrossRefGoogle Scholar
19.Deng, B.L., Campbell, T.J. and Burris, D.R.: Hydrocarbon formation in metallic iron/water systems. Environ. Sci. Technol. 31, 1185 (1997).Google Scholar
20.Matheson, L.J. and Tratnyek, P.G.: Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045 (1994).CrossRefGoogle ScholarPubMed
21.Gash, A.E., Tillotson, T.M., Satcher, J.H., Poco, J.F., Hrubesh, L.W. and Simpson, R.L.: Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem. Mater. 13, 999 (2001).CrossRefGoogle Scholar
22.Shchukin, D.G., Schattka, J.H., Antonietti, M. and Caruso, R.A.: Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template. J. Phys. Chem. B 107, 952 (2003).CrossRefGoogle Scholar
23.Caruso, R.A. and Schattka, J.H.: Cellulose acetate templates for porous inorganic network fabrication. Adv. Mater. 12, 1921 (2000).Google Scholar
24.Kresge, C.T., Leonowiez, M.E., Roth, W.J., Vartuli, J.C. and Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).Google Scholar
25.Johnson, S.A., Ollivier, P.J. and Mallouk, T.E.: Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283, 963 (1999).CrossRefGoogle ScholarPubMed
26.Velev, O.D., Jede, T.A., Lobo, R.F. and Lenhoff, A.M.: Porous silica via colloidal crystallization. Nature 389, 447 (1997).Google Scholar
27.Park, S.H. and Xia, H.: Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv. Mater. 10, 1045 (1998).Google Scholar
28.Jiang, P., Cizeron, J., Bertone, J.F. and Colvin, V.L.: Preparation of macroporous metal films from colloidal crystals. J. Am. Chem. Soc. 121, 7957 (1999).CrossRefGoogle Scholar
29.Ding, Y. and Erlebacher, J.: Nanoporous metals with controlled multimodal pore-size distribution. J. Am. Chem. Soc. 125, 7772 (2003).Google Scholar
30.Kulinowski, K.M., Jiang, P., Vaswani, H. and Colvin, V.L.: Porous metals from colloidal templates. Adv. Mater. 12, 833 (2000).Google Scholar
31.Velev, O.D., Tessier, P.M., Lenhoff, A.M. and Kaler, E.W.: Materials: A class of porous metallic nanostructures. Nature 401, 548 (1999).CrossRefGoogle Scholar
32.Yan, H., Nalnford, C.F., Holland, B.T., Parent, M., Smyrl, W.H. and Stein, A.: A chemical synthesis of periodic macroporous NiO and metallic Ni. Adv. Mater. 11, 1003 (1999).Google Scholar
33.Harrison, R.G., Fox, O.D., Meng, M.O., Dalley, N.K. and Barbous, L.J.: Cation control of pore and channel size in cage-based metal-organic porous materials. Inorg. Chem. 41, 838 (2002).Google Scholar
34.Breulmann, M., Davis, S.A., Mann, S., Hentze, H. and Antonietti, M.: Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks. Adv. Mater. 12, 502 (2000).Google Scholar
35.Zhang, W.X., Wang, C. and Lien, H.: Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 40, 387 (1998).Google Scholar
36.Zhang, W.X.: Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5, 323 (2003).Google Scholar
37.Ponder, S.M., Darab, J.G. and Mallouk, T.E.: Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34, 2564 (2000).Google Scholar
38.Kroschwitz, J. and Howe-Grant, M., Encyclopedia of Chemical Technology, 4th ed. (Wiley & Sons, New York, 1993).Google Scholar
39.Agency, U.S. Environmental Protection: Integrated Risk Information System (IRIS) (Environmental Criteria and Assessment Office, Cincinnati, OH, 1992).Google Scholar
40.Stumm, W. and Morgan, J.J.: Aquatic Chemistry, 3rd ed. (Wiley & Sons, New York, 1996).Google Scholar
41.Alowitz, M.J. and Scherer, M.M.: Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ. Sci. Technol. 36, 299 (2002).Google Scholar
42.Hunger, K.: Industry Dyes: Chemistry, Properties, Applications (Wiley-VCH, Weinheim, Germany, 2003).Google Scholar
43.Cao, J., Wei, L., Huang, Q., Wang, L. and Han, S.: Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38, 565 (1999).CrossRefGoogle ScholarPubMed
44.Namand, S. and Tratnyek, P.G.: Reduction of azo dyes with zero-valent iron. Water Res. 34, 1837 (2000).Google Scholar