Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T17:33:06.626Z Has data issue: false hasContentIssue false

Nanoindentation Method for Determining the Initial Contact and Adhesion Characteristics of Soft Polydimethylsiloxane

Published online by Cambridge University Press:  01 August 2005

Yifang Cao
Affiliation:
Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
Dehua Yang
Affiliation:
Hysitron Inc., Minneapolis, Minnesota 55344
Wole Soboyejoy*
Affiliation:
Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this paper, we present a method for determining the initial contact point and nanoindentation load–indentation depth characteristics for soft materials. The method is applied to the prediction of the load–indentation depth characteristics of polydimethylsiloxane. It involves the combined use of Johnson–Kendall–Roberts and Maugis–Dugdale adhesion theories and nonlinear least squares fitting in the determination of the initial contact point, the transition parameter, and the contact radius at zero contact load. The elastic modulus and the work of adhesion are also extracted from the load–indentation depth curves.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lotters, J.C., Olthuis, W., Veltink, P.H. and Bergveld, P.: The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145 (1997).CrossRefGoogle Scholar
2Bowen, W., Lovitt, R. and Wright, C.: Application of atomic force microscopy to the study of micromechanical properties of biological materials. Biotechnol. Lett. 22, 893 (2000).CrossRefGoogle Scholar
3Buchko, C., Slattery, M., Kozloff, K. and Martin, D.: Mechanical properties of biocompatible protein polymer thin films. J. Mater. Res. 15, 231 (2000).CrossRefGoogle Scholar
4VanLandingham, M.R., Villarrubia, J.S., Guthrie, W.F. and Meyers, G.F.: Nanoindentation of polymers: An overview. Macromol. Symp. 167, 15 (2001).3.0.CO;2-T>CrossRefGoogle Scholar
5Briscoe, B.J., Fiori, L. and Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D: Appl. Phys. 31, 2395 (1998).CrossRefGoogle Scholar
6Li, M., Carter, C.B. and Gerberich, W.W.: Nano-indentation measurements of mechanical properties of polystyrene thin films, in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001). p. Q7.21.1.Google Scholar
7Sun, Y., Akhremitchev, B. and Walker, G.C.: Using the adhesive interaction between atomic force microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples. Langmuir 20, 5837 (2004).CrossRefGoogle ScholarPubMed
8Gillies, G., Prestidge, C.A. and Attard, P.: Determination of the separation in colloid probe atomic force microscopy of deformable bodies. Langmuir 17, 7955 (2001).CrossRefGoogle Scholar
9Briscoe, B.J. and Sebastian, K.S.: The elastoplastic response of poly(methyl methacrylate) to indentation. Proc. R. Soc. London, A 452, 439 (1996).Google Scholar
10Johnson, K.L., Kendall, K. and Robertz, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. London, A 324, 301 (1971).Google Scholar
11Maugis, D.: Adhesion of spheres—The JKR-DMT transition using a Dugdale model. J. Colloid. Interf. Sci. 150, 243 (1992).CrossRefGoogle Scholar
12Johnson, K.L. In Microstructure and Microtribology of Polymer Surfaces, edited by Tsukruk, V.V. and Wahl, K.J. (Am. Chem. Soc., Washington, DC, 2000) Chap. 4, p. 24.Google Scholar
13Barthel, E., Lin, X.Y. and Loubet, J-L.: Adhesion energy measurements in the presence of adsorbed liquid using a rigid surface force apparatus. J. Colloid Interf. Sci 177, 401 (1996).CrossRefGoogle Scholar
14Lantz, M., Shea, S.O. and Welland, M.: Atomic-force-microscope study of contact area and friction on NbSe2. Phys. Rev. B 55, 10776 (1997).CrossRefGoogle Scholar
15Giri, M., Bousfield, D.B. and Unertl, W.N.: Dynamic contacts on viscoelastic films: Work of adhesion. Langmuir 17, 2973 (2001).CrossRefGoogle Scholar
16Attard, P.: Interaction and deformation of elastic bodies: Origin of adhesion hysteresis. J. Phys. Chem. B 104, 10635 (2000).CrossRefGoogle Scholar
17Chen, Y.L., Helm, C.A. and Israelachvili, J.N.: Molecular mechanisms associated with adhesion and contact-angle hysteresis of monolayer surfaces. J. Phys. Chem. 95, 10736 (1991).CrossRefGoogle Scholar
18Allameh, S., Lou, J., Kavishe, F., Buchheit, T. and Soboyejo, W.: An investigation of fatigue in LIGA Ni MEMS thin films. Mater. Sci. Eng. A 371, 256 (2004).CrossRefGoogle Scholar
19Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 156 (1882).CrossRefGoogle Scholar
20Derjaguin, B.V., Muller, V.M. and Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interf. Sci. 53, 314 (1975).CrossRefGoogle Scholar
21Johnson, K.L. and Greenwood, J.A.: An adhesion map for the contact of elastic spheres. J. Colloid Interf. Sci 192, 326 (1997).CrossRefGoogle ScholarPubMed
22Pietrement, O. and Troyon, M.: General equations describing elastic indentation depth and normal contact stiffness versus load. J. Colloid. Interf. Sci. 226, 166 (2000).CrossRefGoogle ScholarPubMed
23Soboyejo, W.: Mechanical Properties of Engineered Materials (Marcel Dekker, New York, 2003).Google Scholar
24Rundlof, M., Karlsson, M., Wagberg, L., Poptoshev, E., Rutland, M. and Claesson, P.: Application of the JKR method to the measurement of adhesion to Langmuir-Blodgett cellulose surfaces. J. Colloid Interface Sci. 230, 441 (2000).CrossRefGoogle Scholar
25Gillies, G. and Prestidge, C.A.: Interaction forces, deformation and nano-rheology of emulsion droplets as determined by colloid probe AFM. Adv. Colloid Interface Sci. 108, 197 (2004).CrossRefGoogle ScholarPubMed
26Silberzan, P., Perutz, S. and Kramer, E.J.: Study of the self-adhesion hysteresis of a siloxane elastomer using the JKR method. Langmuir 10, 2466 (1994).CrossRefGoogle Scholar
27Emerson, J.A., Giunta, R.K., Miller, G.V., Sorensen, C.R. and Pearson, R.A.: The effects of surface contamination on adhesive forces as measured by contact mechanics, in Interfaces, Adhesion and Processing in Polymer Systems, edited by Anastasiadis, S.H., Karim, A., and Ferguson, G.S. (Mater. Res. Soc. Symp. Proc. 629, Warrendale, PA, 2001), p. FF8.7.1.Google Scholar
28Bes, L., Huan, K., Khoshdel, E., Lowe, M.J., McConville, C.F. and Haddleton, D.M.: Poly:(methylmethacrylate-dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: Bulk and surface characterization. Eur. Polym. J. 39, 5 (2003).CrossRefGoogle Scholar
29Bietsch, A. and Michel, B.: Conformal contact and pattern stability of stamps used for soft lithography. J. Appl. Phys. 88, 4310 (2000).CrossRefGoogle Scholar
30Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W. and Whitesides, G.M.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146 (1998).CrossRefGoogle Scholar
31Yu, N. and Polycarpou, A.A.: Adhesive contact based on the Lennard Jones potential: A correction to the value of the equilibrium distance as used in the potential. J. Colloid Interface Sci. 278, 428 (2004).CrossRefGoogle Scholar
32Chin, P., McCullough, R.L. and Wu, W.L.: An improved procedure for determining the work of adhesion for polymer-solid contact. J. Adhesion 64, 145 (1997).CrossRefGoogle Scholar