Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T02:48:59.276Z Has data issue: false hasContentIssue false

Nanoindentation characterization of the cement lines in ovine and bovine femurs

Published online by Cambridge University Press:  30 March 2011

Timothy Montalbano
Affiliation:
Mechanical Engineering, Villanova University, Pennsylvania 19406
Gang Feng*
Affiliation:
Mechanical Engineering, Villanova University, Pennsylvania 19406
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

It was observed that the cement line (CL), namely the border of the osteon in cortical bone, plays an important role in bone fracture: arresting and deflecting cracks. The underlying mechanism was speculated to be that each CL behaves as a weak interface, and thus, it attracts and deflects the bone cracks due to the debonding at the CL. This speculation of a weak CL has not been experimentally verified due to the CL’s challengingly small width. In this study, nanoindentation arrays were carefully conducted to characterize the CLs in ovine and bovine femurs. We found that the modulus and hardness of the CLs are about 30% less than those of the surrounding bone tissues in both species. Thus, for the first time, we characterized the mechanical properties of the CL and verified the speculation of a weak CL, providing a quantitative/constitutive basis for the theoretical modeling of bone micromechanics involving the CL.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.An, Y.H. and Draughn, R.A.: Mechanical Testing of Bone and the Bone-Implant Interface (CRC Press, Boca Raton, 2000).Google Scholar
2.Cowin, S.C.: Bone Mechanics Handbook (CRC Press, Boca Raton, FL, 2001).CrossRefGoogle Scholar
3.Fischer-Cripps, A.C.: Nanoindentation (Springer, New York, NY, 2004).CrossRefGoogle Scholar
4.Li, X.D. and Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).CrossRefGoogle Scholar
5.Gourion-Arsiquaud, S., Burket, J.C., Havill, L.M., DiCarlo, E., Doty, S.B., Mendelsohn, R., Meulen, M.C.d., and Boskey, A.L.: Spatial variation in osteonal bone properties relative to tissue and animal age. J. Bone Miner. Res. 24, 1271 (2009).CrossRefGoogle ScholarPubMed
6.Gupta, H.S., Stachewicz, U., Wagermaier, W., Roschger, P., Wagner, H.D., and Fratzl, P.: Mechanical modulation at the lamellar level in osteonal bone. J. Mater. Res. 21, 1913 (2006).CrossRefGoogle Scholar
7.Rho, J.-Y., Tsui, T.Y., and Pharr, G.M.: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325 (1997).CrossRefGoogle ScholarPubMed
8.Rho, J.Y., Zioupos, P., Currey, J.D., and Pharr, G.M.: Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25, 295 (1999).CrossRefGoogle ScholarPubMed
9.Silva, M.J., Brodt, M.D., Fan, Z., and Rho, J.-Y.: Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse samp6. J. Biomech. 37, 1639 (2004).CrossRefGoogle ScholarPubMed
10.Tai, K., Dao, M., Suresh, S., Palazoglu, A., and Ortiz, C.: Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454 (2007).CrossRefGoogle ScholarPubMed
11.Fratzl, P.: Collagen: Structure and Mechanics (Springer, 2008).CrossRefGoogle Scholar
12.Skedros, J.G., Holmes, J.L., Vajda, E.G., and Bloebaum, R.D.: Cement lines of secondary osteons in human bone are not mineral-deficient: New data in a historical perspective. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 286A, 781 (2005).CrossRefGoogle Scholar
13.Burr, D.B., Schaffler, M.B., and Frederickson, R.G.: Composition of the cement line and its possible mechanical role as a local interface inhuman compact-bone. J. Biomech. 21, 939 (1988).CrossRefGoogle Scholar
14.Mohsin, S., O’Brien, F.J., and Lee, T.C.: Osteonal crack barriers in ovine compact bone. J. Anat. 208, 81 (2006).CrossRefGoogle ScholarPubMed
15.O’Brien, F.J., Taylor, D., and Lee, T.C.: The effect of bone microstructure on the initiation and growth of microcracks. J. Orthop. Res. 23, 475 (2005).CrossRefGoogle ScholarPubMed
16.O’Brien, F.J., Taylor, D., and Lee, T.C.: Bone as a composite material: The role of osteons as barriers to crack growth in compact bone. Int. J. Fatigue 29, 1051 (2007).CrossRefGoogle Scholar
17.Vashishth, D.: Hierarchy of bone microdamage at multiple length scales. Int. J. Fatigue 29, 1024 (2007).CrossRefGoogle ScholarPubMed
18.Ji, B.H. and Gao, H.J.: A study of fracture mechanisms in biological nano-composites via the virtual internal bond model. Mat. Sci. Eng. A. Struct. 366, 96 (2004).CrossRefGoogle Scholar
19.Gao, H.J.: Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. Int. J. Fract. 138, 101 (2006).CrossRefGoogle Scholar
20.Ji, B.H. and Gao, H.J.: Elastic properties of nanocomposite structure of bone. Compos. Sci. Technol. 66, 1212 (2006).CrossRefGoogle Scholar
21.Peterlik, H., Roschger, P., Klaushofer, K., and Fratzl, P.: From brittle to ductile fracture of bone. Nat. Mater. 5, 52 (2006).CrossRefGoogle ScholarPubMed
22.Zioupos, P. and Currey, J.D.: The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29, 978 (1994).CrossRefGoogle Scholar
23.Nalla, R.K., Kinney, J.H., and Ritchie, R.O.: Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2, 164 (2003).CrossRefGoogle ScholarPubMed
24.Evans, F.G. and Riolo, M.L.: Relations between fatigue life and histology of adult human cortical bone. J. Bone Joint Surg. Am. 52, 1579 (1970).CrossRefGoogle ScholarPubMed
25.Lee, T.C.: Microdamage in osteoporosis, bone quality and remodelling. J. Anat. 203, 159 (2003).CrossRefGoogle Scholar
26.Taylor, D. and Lee, T.C.: Microdamage and mechanical behaviour: Predicting failure and remodelling in compact bone. J. Anat. 203, 203 (2003).CrossRefGoogle ScholarPubMed
27.Boyce, T.M., Fyhrie, D.P., Glotkowski, M.C., Radin, E.L., and Schaffler, M.B.: Damage type and strain mode associations in human compact bone bending fatigue. J. Orthop. Res. 16, 322 (1998).CrossRefGoogle ScholarPubMed
28.Tang, B., Ngan, A., and Lu, W.: An improved method for the measurement of mechanical properties of bone by nanoindentation. J. Mater. Sci. Mater. Med. 18, 1875 (2007).CrossRefGoogle ScholarPubMed
29.Hoffler, C.E., Guo, X.E., Zysset, P.K., and Goldstein, S.A.: An application of nanoindentation technique to measure bone tissue lamellae properties. J. Biomech. Eng. T. ASME 127, 1046 (2005).CrossRefGoogle ScholarPubMed
30.Hoffler, C.E., Guo, X.E., Zysset, P.K., and Goldstein, S.A.: An application of nanoindentation technique to measure bone tissue lamellae properties. J. Biomech. Eng. 127, 1046 (2005).CrossRefGoogle ScholarPubMed
31.Skedros, J.G., Holmes, J.L., Vajda, E.G., and Bloebaum, R.D.: Cement lines of secondary osteons in human bone are not mineral-deficient: New data in a historical perspective. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 286A, 781 (2005).CrossRefGoogle Scholar
32.Skedros, J.G., Hunt, K.J., and Bloebaum, R.D.: Relationships of loading history and structural and material characteristics of bone: Development of the mule deer calcaneus. J. Morphol. 259, 281 (2004).CrossRefGoogle ScholarPubMed
33.Walter, C. and Mitterer, C.: 3d versus 2d finite element simulation of the effect of surface roughness on nanoindentation of hard coatings. Surf. Coat. Tech. 203, 3286 (2009).CrossRefGoogle Scholar
34.Yao, H., Dao, M., Carnelli, D., Tai, K., and Ortiz, C.: Size-dependent heterogeneity benefits the mechanical performance of bone. J. Mech. Phys. Solids 59, 64 (2011).CrossRefGoogle Scholar
35.Rho, J.Y. and Pharr, G.M.: Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J. Mater. Sci. Mater. Med. 10, 485 (1999).CrossRefGoogle ScholarPubMed
36.Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., and Hansma, P.K.: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761 (1999).CrossRefGoogle Scholar
37.Clegg, W.J., Kendall, K., Alford, N.M., Button, T.W., and Birchall, J.D.: A simple way to make tough ceramics. Nature 347, 455 (1990).CrossRefGoogle Scholar
38.Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., and Aksay, I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2001).CrossRefGoogle Scholar
39.Okumura, K. and de Gennes, P.G.: Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures. Eur. Phys. J. E. 4, 121 (2001).CrossRefGoogle Scholar
40.Guo, X.E., Liang, L.C., and Goldstein, S.A.: Micromechanics of osteonal cortical bone fracture. J. Biomech. Eng. T. ASME 120, 112 (1998).CrossRefGoogle ScholarPubMed
41.Saitoh, T., Miyake, S., and Matsunuma, S.: Micro-tribological properties of heat treated hard disk evaluated by force modulation method. Microsyst. Technol. 11, 1138 (2005).CrossRefGoogle Scholar
42.Li, M., Chen, W.M., Cheng, Y.T., and Cheng, C.M.: Influence of contact geometry on hardness behavior in nano-indentation. Vacuum 84, 315 (2009).CrossRefGoogle Scholar
43.Saber-Samandari, S. and Gross, K.A.: Effect of angled indentation on mechanical properties. J. Eur. Ceram. Soc. 29, 2461 (2009).CrossRefGoogle Scholar