Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T21:17:15.713Z Has data issue: false hasContentIssue false

Nanoenabling electrochemical sensors for life sciences applications

Published online by Cambridge University Press:  14 August 2017

Paul Galvin*
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
Narayanasamy Padmanathan
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
Kafil M. Razeeb
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
James F. Rohan
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
Lorraine C. Nagle
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
Amelie Wahl
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
Eric Moore
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
Walter Messina
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
Karen Twomey
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
Vladimir Ogurtsov
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Venkatesan Renugopalakrishnan

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Calvo, E.J.: Chapter 1 fundamentals. The basics of electrode reactions. In Comprehensive Chemical Kinetics, Bamford, C.H. and Compton, R.G., eds. (Elsevier, Amsterdam, The Netherlands, 1986); p. 1.Google Scholar
Ciobanu, M., Wilburn, J.P., Krim, M.L., and Cliffel, D.E.: 1-Fundamentals. In Handbook of Electrochemistry, Zoski, C.G., ed. (Elsevier, Amsterdam, The Netherlands 2007); p. 3.CrossRefGoogle Scholar
William, R.L. and Mark, P.O.: Voltammetry. In Analytical Instrumentation Handbook, 3rd ed., Cazes, J., ed. (CRC Press, Boca Raton, Florida, 2004); p. 529.Google Scholar
Myland, J.C. and Oldham, K.B.: Uncompensated resistance. 1. The effect of cell geometry. Anal. Chem. 72(17), 3972 (2000).CrossRefGoogle ScholarPubMed
Wang, J.: Analytical Electrochemistry (John Wiley & Sons, Hoboken, New Jersey, 2006).CrossRefGoogle Scholar
Farash, M.S., Turkanović, M., Kumari, S., and Hölbl, M.: An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Internet of Things environment. Ad Hoc Networks 36, 152 (2016).Google Scholar
Arshak, K., Twomey, K., Heffernan, D., and Ieee, I.: Development of a novel humidity sensor with error-compensated measurement system. In 2002 23rd International Conference on Microelectronics, Vol. 1, Proceedings (IEEE, Niš, Yugoslavia, 2002); p. 215.Google Scholar
Arshak, K.I. and Twomey, K.: Investigation into a novel humidity sensor operating at room temperature. Microelectron. J. 33(3), 213 (2002).Google Scholar
Goumopoulos, C., O’Flynn, B., and Kameas, A.: Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Comput. Electron. Agric. 105, 20 (2014).Google Scholar
Ogurtsov, V.I., Twomey, K., and Herzog, G.: Development of an integrated electrochemical sensing system to monitor port water quality using autonomous robotic fish. In Comprehensive Materials Processing, Vol. 13, Hashmi, S., ed. (Elsevier, Amsterdam, The Netherlands, 2014); p. 317.Google Scholar
Lawlor, A., Torres, J., O’Flynn, B., Wallace, J., and Regan, F.: Deploy: A long term deployment of a water quality sensor monitoring system. Sens. Rev. 32, 29 (2012).CrossRefGoogle Scholar
Herzog, G., Moujahid, W., Twomey, K., Lyons, C., and Ogurtsov, V.I.: On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta 116, 26 (2013).CrossRefGoogle ScholarPubMed
Twomey, K., de Eulate, E.A., Alderman, J., and Arrigan, D.: Fabrication and characterization of a miniaturized planar voltammetric sensor array for use in an electronic tongue. Sens. Actuators, B 140, 532 (2009).CrossRefGoogle Scholar
Twomey, K., Nagle, L., Said, A., Barry, F., and Ogurtsov, V.: Characterisation of nanoporous gold for use in a dissolved oxygen sensing application. J. Bionanosci. 5(1), 55 (2015).CrossRefGoogle Scholar
Caffrey, C.M., Chevalerias, O., Mathuna, C.O., and Twomey, K.: Swallowable-capsule technology. IEEE Pervasive Comput. 7, 23 (2008).CrossRefGoogle Scholar
Hickling, A.: Studies in electrode polarisation. Part IV.—The automatic control of the potential of a working electrode. Trans. Faraday Soc. 38, 27 (1942).CrossRefGoogle Scholar
Mc Caffrey, C.: Development of circuitry and software for a diagnostic swallowable capsule. In Department of Microelectronics and Tyndall National Institute, UCC (University College Cork, Cork, Ireland, 2008); p. 216.Google Scholar
Turner, R.F.B., Harrison, D.J., and Baltes, H.P.: A CMOS potentiostat for amperometric chemical sensors. IEEE J. Solid-State Circuits 22, 473 (1987).CrossRefGoogle Scholar
Reay, R.J., Kounaves, S.P., and Kovacs, G.T.A.: An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation. In Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC, 1994 IEEE International (Editions Frontières, Gif-sur-Yvette, France, 1994); p. 162.Google Scholar
Bandyopadhyay, A., Mulliken, G., Cauwenberghs, G., and Thakor, N.: VLSI potentiostat array for distributed electrochemical neural recording. In Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on (IEEE, Phoenix-Scottsdale, Arizona, 2002); p. II.Google Scholar
Murari, K., Thakor, N., Stanacevic, M., and Cauwenberghs, G.: Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing. In Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE, Vol. 2 (IEEE, San Francisco, California, 2004); p. 4063.Google Scholar
Galandova, J., Ziyatdinova, G., and Labuda, J.: Disposable electrochemical biosensor with multiwalled carbon nanotubes—Chitosan composite layer for the detection of deep DNA damage. Anal. Sci. 2, 711 (2008).Google Scholar
Van Gerwen, P., Laureyn, W., Laureys, W., Huyberechts, G., Op De Beeck, M., Baert, K., Suls, J., Sansen, W., Jacobs, P., Hermans, L., and Mertens, R.: Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens. Actuators, B 49, 7380 (1998).Google Scholar
Katz, E. and Willner, I.: Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15, 913947 (2003).Google Scholar
Moreno-Hagelsieb, L., Foultier, B., Laurent, G., Pampin, R., Remacle, J., Raskin, J.P., and Flandre, D.: Electrical detection of DNA hybridization: Three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens. Bioelectron. 22, 21992207 (2007).CrossRefGoogle ScholarPubMed
Daniels, J.S. and Pourmand, N.: Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 19, 12391257 (2007).CrossRefGoogle ScholarPubMed
Trancik, J.E., Calabrese Barton, S., and Hone, J.: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982987 (2008).Google Scholar
Yun, Y., Gollapudi, R., Shanov, V., Schulz, M.J., Dong, Z., Jazieh, A., Heineman, W.R., Halsall, H.B., Wong, D.K., Bange, A., Tu, Y., and Subramaniam, S.: Carbon nanotubes grown on stainless steel to form plate and probe electrodes for chemical/biological sensing. J. Nanosci. Nanotechnol. 7, 891897 (2007).CrossRefGoogle ScholarPubMed
Law, K.A. and Higson, S.P.J.: Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides. Biosens. Bioelectron. 20, 19141924 (2005).Google Scholar
Zou, Z., Kai, J., Rust, M.J., Han, J., and Ahn, C.H.: Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuators, A 136, 518526 (2007).CrossRefGoogle Scholar
Moore, E., Rawley, O., Wood, T., and Galvin, P.: Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors. Sens. Actuators, B 139, 187193 (2009).CrossRefGoogle Scholar
Ceriotti, L., Kob, A., Drechsler, S., Ponti, J., Thedinga, E., Colpo, P., Ehret, R., and Rossi, F.: Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal. Biochem. 371, 92104 (2007).Google Scholar
Hu, W., Crouch, A.S., Miller, D., Aryal, M., and Luebke, K.J.: Inhibited cell spreading on polystyrene nanopillars fabricated by nanoimprinting and in situ elongation. Nanotechnology 21, 385301 (2010).Google Scholar
Messina, W., Fitzgerald, M., and Moore, E.: SEM and ECIS investigation of cells cultured on nanopillar modified interdigitated impedance electrodes for analysis of cell growth and cytotoxicity of potential anticancer drugs. Electroanalysis 28, 21882195 (2016).CrossRefGoogle Scholar
Lee, J., Cuddihy, M.J., and Kotov, N.A.: Three-dimensional cell culture matrices: State of the art. Tissue Eng., Part B 14, 6186 (2008).CrossRefGoogle ScholarPubMed
Raistrick, I.D., Franceschetti, D.R., and Macdonald, J.R.: Chapter 2. Theory. In Impedance Spectroscopy; Theory, Experiment, and Applications, 2nd ed., Barsoukov, E. and Macdonald, J.R., eds. (Wiley Interscience Publications, Toronto, Canada, 2005); pp. 123128.Google Scholar
Giaever, I. and Keese, C.R.: Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. U. S. A. 88, 78967900 (1991).Google Scholar
Wegener, J., Keese, C.R., and Giaever, I.: Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259, 158166 (2000).Google Scholar
Belkin, S.: Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206212 (2003).Google Scholar
Keese, C.R., Wegener, J., Walker, S.R., and Giaever, I.: Electrical wound-healing assay for cells in vitro . Proc. Natl. Acad. Sci. U. S. A. 101, 15541559 (2004).Google Scholar
Arndt, S., Seebach, J., Psathaki, K., Galla, H-J., and Wegener, J.: Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens. Bioelectron. 19, 583594 (2004).Google Scholar
Xiao, C. and Luong, J.H.T.: Assessment of cytotoxicity by emerging impedance spectroscopy. Toxicol. Appl. Pharmacol. 206, 102112 (2005).Google Scholar
Opp, D., Wafula, B., Lim, J., Huang, E., Lo, J.C., and Lo, C.M.: Use of electric cell–substrate impedance sensing to assess in vitro cytotoxicity. Biosens. Bioelectron. 24, 26252629 (2009).CrossRefGoogle ScholarPubMed
Campbell, C.E., Laane, M.M., Haugarvoll, E., and Giaever, I.: Monitoring viral-induced cell death using electric cell–substrate impedance sensing. Biosens. Bioelectron. 23, 536542 (2007).CrossRefGoogle ScholarPubMed
van der Schalie, W.H., James, R.R., and Gargan, T.P. II: Selection of a battery of rapid toxicity sensors for drinking water evaluation. Biosens. Bioelectron. 22, 1827 (2006).Google Scholar
Wang, J.: Electrochemical glucose biosensors. Chem. Rev. 108, 814 (2008).Google Scholar
Heller, A. and Feldman, B.: Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482 (2008).Google Scholar
Tian, K., Prestgard, M., and Tiwari, A.: A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng., C 41, 100 (2014).Google Scholar
Chen, C., Xie, Q., Yang, D., Xiao, H., Fu, Y., Tan, Y., and Yao, S.: Recent advances in electrochemical glucose biosensors: A review. RSC Adv. 3, 4473 (2013).CrossRefGoogle Scholar
Hu, J.: The evolution of commercialized glucose sensors in China. Biosens. Bioelectron. 24(5), 1083 (2009).Google Scholar
Dröge, W.: Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47 (2002).Google Scholar
Rahman, M.M., Ahammad, A.J.S., Jin, J-H., Ahn, S.J., and Lee, J-J.: A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855 (2010).Google Scholar
Justino, C.I.L., Rocha-Santos, T.A., Duarte, A.C., and Rocha-Santos, T.A.: Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC, Trends Anal. Chem. 29, 1172 (2010).Google Scholar
Park, S., Boo, H., and Chung, T.D.: Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556(1), 46 (2006).Google Scholar
Toghill, K.E. and Compton, R.G.: Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 5, 1246 (2010).CrossRefGoogle Scholar
Si, P., Huang, Y., Wang, T., and Ma, J.: Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 3, 3487 (2013).Google Scholar
Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353 (2003).Google Scholar
Lee, E.P., Chen, J., Yin, Y., Campbell, C.T., and Xia, Y.: Pd-catalyzed growth of Pt nanoparticles or nanowires as dense coatings on polymeric and ceramic particulate supports. Adv. Mater. 18, 3271 (2006).CrossRefGoogle Scholar
Sun, Y. and Xia, Y.: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Nature 353, 737 (1991).Google Scholar
Hanrath, T. and Korgel, B.A.: Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Adv. Mater. 15, 437 (2003).CrossRefGoogle Scholar
Wang, Z.L.: Nanowires and Nanobelts: Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires (Springer Science & Business Media, New York, New York, 2013).Google Scholar
Anandan, V., Rao, Y.L., and Zhang, G.: Nanopillar array structures for enhancing biosensing performance. Int. J. Nanomed. 1, 73 (2006).Google Scholar
Wang, H., Wang, X., Zhang, X., Qin, X., Zhao, Z., Miao, Z., Huang, N., and Chen, Q.: A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens. Bioelectron. 25, 142 (2009).Google Scholar
Qu, F., Yang, M., Shen, G., and Yu, R.: Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosens. Bioelectron. 22, 1749 (2007).Google Scholar
Choi, S.M., Kim, J.H., Jung, J.Y., Yoon, E.Y., and Kim, W.B.: Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation. Electrochim. Acta 53, 5804 (2008).CrossRefGoogle Scholar
Birenbaum, N.S., Lai, B.T., Chen, C.S., Reich, D.H., and Meyer, G.J.: Selective noncovalent adsorption of protein to bifunctional metallic nanowire surfaces. Langmuir 19, 9580 (2003).Google Scholar
Wilson, R. and Turner, A.: Glucose oxidase: An ideal enzyme. Biosens. Bioelectron. 7, 165 (1992).Google Scholar
Wang, L., Gao, X., Jin, L., Wu, Q., Chen, Z., and Lin, X.: Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sens. Actuators, B 176, 9 (2013).CrossRefGoogle Scholar
Lu, Y., Yang, M., Qu, F., Shen, G., and Yu, R.: Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochemistry 71, 211 (2007).Google Scholar
Delvaux, M. and Demoustier-Champagne, S.: Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosens. Bioelectron. 18, 943 (2003).CrossRefGoogle ScholarPubMed
Claussen, J.C., Wickner, M.M., Fisher, T.S., and Porterfield, D.M.: Transforming the fabrication and biofunctionalization of gold nanoelectrode arrays into versatile electrochemical glucose biosensors. ACS Appl. Mater. Interfaces 3, 1765 (2011).Google Scholar
Wen, Z., Ci, S., and Li, J.: Pt nanoparticles inserting in carbon nanotube arrays: Nanocomposites for glucose biosensors. J. Phys. Chem. C 113, 13482 (2009).Google Scholar
Liu, J., Guo, C., Li, C.M., Li, Y., Chi, Q., Huang, X., Liao, L., and Yu, T.: Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem. Commun. 11, 202 (2009).Google Scholar
Pradhan, D., Niroui, F., and Leung, K.: High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl. Mater. Interfaces 2, 2409 (2010).CrossRefGoogle ScholarPubMed
Hsu, C-W. and Wang, G-J.: Highly sensitive glucose biosensor based on Au–Ni coaxial nanorod array having high aspect ratio. Biosens. Bioelectron. 56, 204 (2014).Google Scholar
Yang, X., Wang, Y., Liu, Y., and Jiang, X.: A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core–shell nanorods. Electrochim. Acta 108, 39 (2013).CrossRefGoogle Scholar
Yang, Z., Tang, Y., Li, J., Zhang, Y., and Hu, X.: Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor. Biosens. Bioelectron. 54, 528 (2014).Google Scholar
Xie, Y. and Wang, W.: Bioelectrocatalytic performance of glucose oxidase/nitrogen-doped titania nanotube array enzyme electrode. J. Chem. Technol. Biotechnol. 91, 1403 (2015).Google Scholar
Qu, K., Shi, P., Ren, J., and Qu, X.: Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chem.–Eur. J. 20, 7501 (2014).Google Scholar
Wei, Y., Li, Y., Liu, X., Xian, Y., Shi, G., and Jin, L.: ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Biosens. Bioelectron. 26, 275 (2010).CrossRefGoogle ScholarPubMed
Liu, X., Hu, Q., Wu, Q., Zhang, W., Fang, Z., and Xie, Q.: Aligned ZnO nanorods: A useful film to fabricate amperometric glucose biosensor. Colloids Surf., B 74, 154 (2009).CrossRefGoogle ScholarPubMed
Yang, K., She, G-W., Wang, H., Ou, X-M., Zhang, X-H., Lee, C-S., and Lee, S-T.: ZnO nanotube arrays as biosensors for glucose. J. Phys. Chem. C 113, 20169 (2009).Google Scholar
Zang, J., Li, C.M., Cui, X., Wang, J., Sun, X., Dong, H., and Sun, C.Q.: Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008 (2007).Google Scholar
Jia, X., Hu, G., Nitze, F., Barzegar, H.R., Sharifi, T., Tai, C-W., and Wågberg, T.: Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection. ACS Appl. Mater. Interfaces 5, 12017 (2013).Google Scholar
Patil, D., Dung, N.Q., Jung, H., Ahn, S.Y., Jang, D.M., and Kim, D.: Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens. Bioelectron. 31, 176 (2012).CrossRefGoogle ScholarPubMed
Wang, Z., Liu, S., Wu, P., and Cai, C.: Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal. Chem. 81, 1638 (2009).Google Scholar
Lee, K.K., Loh, P.Y., Sow, C.H., and Chin, W.S.: CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochem. Commun. 20, 128 (2012).Google Scholar
Yang, L., Zhang, Y., Chu, M., Deng, W., Tan, Y., Ma, M., Su, X., Xie, Q., and Yao, S.: Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell. Biosens. Bioelectron. 52, 105 (2014).Google Scholar
Cherevko, S. and Chung, C-H.: Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens. Actuators, B 142, 216 (2009).CrossRefGoogle Scholar
Zhao, Y., Chu, J., Li, S.H., Li, W.W., Liu, G., Tian, Y.C., and Yu, H.Q.: Non-enzymatic electrochemical detection of glucose with a gold nanowire array electrode. Electroanalysis 26, 656 (2014).Google Scholar
Bai, Y., Sun, Y., and Sun, C.: Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosens. Bioelectron. 24, 579 (2008).Google Scholar
Mahshid, S.S., Mahshid, S., Dolati, A., Ghorbani, M., Yang, L., Luo, S., and Cai, Q.: Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim. Acta 58, 551 (2011).CrossRefGoogle Scholar
Yuan, J., Wang, K., and Xia, X.: Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater. 15, 803 (2005).Google Scholar
Li, Y., Niu, X., Tang, J., Lan, M., and Zhao, H.: A comparative study of nonenzymatic electrochemical glucose sensors based on Pt–Pd nanotube and nanowire arrays. Electrochim. Acta 130, 1 (2014).Google Scholar
Lu, L-M., Zhang, L., Qu, F-L., Lu, H-X., Zhang, X-B., Wu, Z-S., Huan, S-Y., Wang, Q-A., Shen, G-L., and Yu, R-Q.: A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: Enhancing sensitivity through a nanowire array strategy. Biosens. Bioelectron. 25, 218 (2009).Google Scholar
Jamal, M., Hasan, M., Mathewson, A., and Razeeb, K.M.: Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate. Biosens. Bioelectron. 40, 213 (2013).Google Scholar
Jamal, M., Hasan, M., Schmidt, M., Petkov, N., Mathewson, A., and Razeeb, K.M.: Shell@core coaxial NiO@Ni nanowire arrays as high performance enzymeless glucose sensor. J. Electrochem. Soc. 160, B207 (2013).Google Scholar
Shervedani, R.K., Karevan, M., and Amini, A.: Prickly nickel nanowires grown on Cu substrate as a supersensitive enzyme-free electrochemical glucose sensor. Sens. Actuators, B 204, 783 (2014).Google Scholar
Zhang, Y., Su, L., Manuzzi, D., de los Monteros, H.V.E., Jia, W., Huo, D., Hou, C., and Lei, Y.: Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron. 31, 426 (2012).CrossRefGoogle ScholarPubMed
Gao, Z.D., Guo, J., Shrestha, N.K., Hahn, R., Song, Y.Y., and Schmuki, P.: Nickel hydroxide nanoparticle activated semi-metallic TiO2 nanotube arrays for non-enzymatic glucose sensing. Chem.–Eur. J. 19, 15530 (2013).Google Scholar
Huo, K., Li, Y., Chen, R., Gao, B., Peng, C., Zhang, W., Hu, L., Zhang, X., and Chu, P.K.: Recyclable non-enzymatic glucose sensor based on Ni/NiTiO3/TiO2 nanotube arrays. ChemPlusChem 80, 576 (2015).Google Scholar
Wang, C., Yin, L., Zhang, L., and Gao, R.: Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J. Phys. Chem. C 114, 4408 (2010).Google Scholar
Ding, R., Liu, J., Jiang, J., Zhu, J., and Huang, X.: Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. Anal. Methods 4, 4003 (2012).Google Scholar
Long, M., Tan, L., Liu, H., He, Z., and Tang, A.: Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. Biosens. Bioelectron. 59, 243 (2014).Google Scholar
Yu, S., Peng, X., Cao, G., Zhou, M., Qiao, L., Yao, J., and He, H.: Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochim. Acta 76, 512 (2012).Google Scholar
Huang, J., Zhu, Y., Yang, X., Chen, W., Zhou, Y., and Li, C.: Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: In situ engineered versus ex situ piled. Nanoscale 7, 559 (2015).Google Scholar
Wang, J., Bao, W., and Zhang, L.: A nonenzymatic glucose sensing platform based on Ni nanowire modified electrode. Anal. Methods 4, 4009 (2012).Google Scholar
Cao, X. and Wang, N.: A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136, 4241 (2011).Google Scholar
Zhuang, Z., Su, X., Yuan, H., Sun, Q., Xiao, D., and Choi, M.M.: An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133, 126 (2008).Google Scholar
Mazzio, E.A. and Soliman, K.F.: Glioma cell antioxidant capacity relative to reactive oxygen species produced by dopamine. J. Appl. Toxicol. 24, 99 (2004).Google Scholar
Komazaki, Y., Inoue, T., and Tanaka, S.: Automated measurement system for H2O2 in the atmosphere by diffusion scrubber sampling and HPLC analysis of Ti(IV)–PAR–H2O2 complex. Analyst 126, 587 (2001).Google Scholar
Shu, X., Chen, Y., Yuan, H., Gao, S., and Xiao, D.: H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Anal. Chem. 79, 3695 (2007).Google Scholar
Wang, F., Liu, X., Lu, C-H., and Willner, I.: Cysteine-mediated aggregation of Au nanoparticles: The development of a H2O2 sensor and oxidase-based biosensors. ACS Nano 7, 7278 (2013).Google Scholar
Hsiao, W.H., Chen, H.Y., Cheng, T.M., Huang, T.K., Chen, Y.L., Lee, C.Y., and Chi, H.T.: Urchin-like Ag nanowires as non-enzymatic hydrogen peroxide sensor. J. Chin. Chem. Soc. 59, 500 (2012).Google Scholar
Kurowska, E., Brzózka, A., Jarosz, M., Sulka, G., and Jaskuła, M.: Silver nanowire array sensor for sensitive and rapid detection of H2O2 . Electrochim. Acta 104, 439 (2013).Google Scholar
Li, Y., Zu, L., Liu, G., Qin, Y., Shi, D., and Yang, J.: Nanospherical surface-supported seeded growth of Au nanowires: Investigation on a new growth mechanism and high-performance hydrogen peroxide sensors. Part. Part. Syst. Charact. 32, 498 (2015).Google Scholar
Jamal, M., Hasan, M., Mathewson, A., and Razeeb, K.M.: Non-enzymatic and highly sensitive H2O2 sensor based on Pd nanoparticle modified gold nanowire array electrode. J. Electrochem. Soc. 159, B825 (2012).Google Scholar
Huang, J., Zhu, Y., Zhong, H., Yang, X., and Li, C.: Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl. Mater. Interfaces 6, 7055 (2014).Google Scholar
Xu, J., Shang, F., Luong, J.H., Razeeb, K.M., and Glennon, J.D.: Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode. Biosens. Bioelectron. 25, 1313 (2010).CrossRefGoogle ScholarPubMed
Bai, W., Zheng, J., and Sheng, Q.: A non-enzymatic hydrogen peroxide sensor based on Ag/MnOOH nanocomposites. Electroanalysis 25, 2305 (2013).CrossRefGoogle Scholar
Meng, F., Yan, X., Liu, J., Gu, J., and Zou, Z.: Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta 56, 4657 (2011).Google Scholar
Wang, L., Deng, M., Ding, G., Chen, S., and Xu, F.: Manganese dioxide based ternary nanocomposite for catalytic reduction and nonenzymatic sensing of hydrogen peroxide. Electrochim. Acta 114, 416 (2013).Google Scholar
Su, S., Wei, X., Guo, Y., Zhong, Y., Su, Y., Huang, Q., Fan, C., and He, Y.: A silicon nanowire-based electrochemical sensor with high sensitivity and electrocatalytic activity. Part. Part. Syst. Charact. 30, 326 (2013).Google Scholar
Pang, X., He, D., Luo, S., and Cai, Q.: An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens. Actuators, B 137, 134 (2009).Google Scholar
Kang, Q., Yang, L., and Cai, Q.: An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry 74, 62 (2008).Google Scholar
Gu, B.X., Xu, C.X., Zhu, G.P., Liu, S.Q., Chen, L.Y., Wang, M.L., and Zhu, J.J.: Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing. J. Phys. Chem. B 113, 6553 (2009).Google Scholar
Kafi, A.K.M., Wu, G., and Chen, A.: A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron. 24, 566 (2008).Google Scholar
Li, L., Huang, J., Wang, T., Zhang, H., Liu, Y., and Li, J.: An excellent enzyme biosensor based on Sb-doped SnO2 nanowires. Biosens. Bioelectron. 25, 2436 (2010).Google Scholar
Pickering, H.W. and Swann, P.R.: Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking. Corrosion 19, 373 (1963).Google Scholar
Pickering, H.W. and Wagner, C.: Electrolytic dissolution of binary alloys containing a noble metal. J. Electrochem. Soc. 698, 114 (1967).Google Scholar
Forty, A.J.: Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597 (1979).Google Scholar
Wittstock, A., Zielasek, V., Biener, J., Friend, C.M., and Bäumer, M.: Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319 (2010).Google Scholar
Sieradzki, K., Dimitrov, N., Movrin, D., McCall, C., Vasiljevic, N., and Erlebacher, J.: The dealloying critical potential. J. Electrochem. Soc. 149, B370 (2002).Google Scholar
Snyder, J., Livi, K., and Erlebacher, J.: Dealloying silver/gold alloys in neutral silver nitrate solution: Porosity evolution, surface composition, and surface oxides. J. Electrochem. Soc. 155, C464 (2008).Google Scholar
Erlebacher, J.: An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, C614 (2004).Google Scholar
Snyder, J. and Erlebacher, J.: Kinetics of crystal etching limited by terrace dissolution. J. Electrochem. Soc. 157, C125 (2010).Google Scholar
Fujita, T., Guan, P., McKenna, K., Lang, X., Hirata, A., Zhang, L., Tokunaga, T., Arai, S., Yamamoto, Y., Tanaka, N., Ishikawa, Y., Asao, N., Yamamoto, Y., Erlebacher, J., and Chen, M.: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).Google Scholar
Snyder, J., Asanithi, P., Dalton, A.B., and Erlebacher, J.: Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 20, 4883 (2008).Google Scholar
Hakamada, M. and Mabuchi, M.: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007).Google Scholar
Morrish, R., Dorame, K., and Muscat, A.J.: Formation of nanoporous Au by dealloying AuCu thin films in HNO3 . Scr. Mater. 64, 856 (2011).Google Scholar
Qian, L.H. and Chen, M.W.: Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91, 083105 (2007).Google Scholar
Ding, Y., Kim, Y.J., and Erlebacher, J.: Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 16, 1897 (2004).Google Scholar
Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., and Abraham, F.F.: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006).Google Scholar
Detsi, E., Punzhin, S., Rao, J., Onck, P.R., and De Hosson, J.T.M.: Enhanced strain in functional nanoporous gold with a dual microscopic length scale structure. ACS Nano 6, 3734 (2012).Google Scholar
Oppermann, H. and Dietrich, L.: Nanoporous gold bumps for low temperature bonding. Microelectron. Reliab. 52, 356 (2012).Google Scholar
Zielasek, V., Jürgens, B., Schulz, C., Biener, J., Biener, M.M., Hamza, A.V., and Bäumer, M.: Gold catalysts: Nanoporous gold foams. Angew. Chem., Int. Ed. 45, 8241 (2006).Google Scholar
Pattrick, G., van der Lingen, E., Corti, C.W., Holliday, R.J., and Thompson, D.T.: The potential for use of gold in automotive pollution control technologies: A short review. Top. Catal. 30–31, 273 (2004).Google Scholar
Choudhary, T.V. and Goodman, D.W.: Catalytically active gold: The role of cluster morphology. Appl. Catal., A 291, 32 (2005).Google Scholar
Hutchings, G.J.: Vapour phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal catalysts. J. Catal. 96, 292 (1985).Google Scholar
Haruta, M., Kobayashi, T., Sano, H., and Yamada, N.: Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16, 405 (1987).Google Scholar
Xu, C., Su, J., Xu, X., Liu, P., Zhao, H., Tian, F., and Ding, Y.: Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42 (2007).Google Scholar
Zeis, R., Lei, T., Sieradzki, K., Snyder, J., and Erlebacher, J.: Low temperature CO oxidation over unsupported nanoporous gold. J. Catal. 253, 132 (2008).Google Scholar
Zhang, J., Liu, P., Ma, H., and Ding, Y.: Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C 111, 10382 (2007).Google Scholar
Deng, Y., Huang, W., Chen, X., and Li, Z.: Facile fabrication of nanoporous gold film electrodes. Electrochem. Commun. 10, 810 (2008).Google Scholar
Nagle, L.C. and Rohan, J.F.: Nanoporous gold catalyst for direct ammonia borane fuel cells. J. Electrochem. Soc. 158, B772 (2011).Google Scholar
Nagle, L.C. and Rohan, J.F.: Nanoporous gold anode catalyst for direct borohydride fuel cell. Int. J. Hydrogen Energy 36, 10319 (2011).Google Scholar
Yan, X., Meng, F., Cui, S., Liu, J., Gu, J., and Zou, Z.: Effective and rapid electrochemical detection of hydrazine by nanoporous gold. J. Electroanal. Chem. 44, 661 (2011).Google Scholar
Jena, B.K. and Raj, C.R.: Ultrasensitive nanostructured platform for the electrochemical sensing of hydrazine. J. Phys. Chem. C 111, 6228 (2007).Google Scholar
Meng, F., Yan, X., Liu, J., Gu, J., and Zou, Z.: Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta 56, 4657 (2011).Google Scholar
Twomey, K., Nagle, L.C., Said, A., Barry, F., and Ogurtsov, V.I.: Characterisation of nanoporous gold for use in a dissolved oxygen sensing application. BioNanoScience 5, 55 (2015).Google Scholar
Mohd Said, N.A., Ogurtsov, V.I., Twomey, K., Nagle, L.C., and Herzog, G.: Chemically modified electrodes for recessed microelectrode array. Procedia Chem. 20, 12 (2016).Google Scholar
Chapman, C.A.R., Chen, H., Stamou, M., Biener, J., Biener, M.M., Lein, P.J., and Seker, E.: Nanoporous gold as a neural interface coating: Effects of topography, surface chemistry, and feature size. ACS Appl. Mater. Interfaces 7, 7093 (2015).Google Scholar
Pugh, D.V., Dursun, A., and Corcoran, S.G.: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75 Pt0.25 . J. Mater. Res. 18, 216 (2003).Google Scholar
Chen, L-Y., Yu, J-S., Fujita, T., and Chen, M-W.: Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 19, 1221 (2009).Google Scholar
Hakamada, M., Motomura, J., Hirashima, F., and Mabuchi, M.: Preparation of nanoporous ruthenium catalyst and its CO oxidation characteristics. Mater. Trans. 53, 524 (2012).Google Scholar
Chen, Q. and Sieradzki, K.: Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 12, 1102 (2013).Google Scholar
Vazquez, P., Herzog, G., O'Mahony, C., O'Brien, J., Scully, J., Blake, A., O'Mathuna, C., and Galvin, P.: Microscopic gel–liquid interfaces supported by hollow microneedle array for voltammetric drug detection. Sens. Actuators, B 201, 572 (2014).Google Scholar