Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:06:03.077Z Has data issue: false hasContentIssue false

Nanocrystals in crystalline silicon: Void formation and hollow particles

Published online by Cambridge University Press:  31 January 2011

A. Meldrum
Affiliation:
Department of Physics, University of Alberta, Edmonton, AB T6G 2J1, Canada
S. Honda
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
L. A. Boatner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

Nanophase precipitates of CdS formed in amorphous SiO2 by ion implantation and thermal processing have recently been found to exhibit a “hollow-particle” or “shell-like” microstructure. The present investigations show that this hollow-particle microstructure can be reproduced for a variety of materials other than CdS, and these results provide new insight into the mechanisms responsible for the formation of hollow precipitates embedded in solid hosts. Various elemental metal nanocrystals were formed in (100)-oriented crystalline Si hosts by ion implantation coupled with thermal treatments in which the annealing parameters were varied to investigate the “hollow-particle” formation conditions. The results indicate that depending on the melting points and vapor pressure of the precipitates or on the initial state of the host material, several processes acting either independently or in concert can lead to hollow precipitate formation. First, the implantation of materials having a high vapor pressure, either at the implant temperature or when heated during annealing, can lead to the formation of cavities in the crystalline host. Hollow precipitates can then form by a partial filling and coating of the cavity walls by the implanted species in a diffusion-based gettering/ripening process. Internal void formation can also occur or be enhanced by volume contraction during cooling if the particle solidifies from a liquid phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Meldrum, A., Haglund, R.F. Jr., Boatner, L.A., and White, C.W.. Adv. Mater. (in press).Google Scholar
2Proceedings of the XXth International conference on Ion Beam Modification of Materials, edited by Polman, A., Nucl. Instrum. Methods Phys. Rev. B 148 (Elsevier, Amsterdam, The Nether-lands, 1999).Google Scholar
3Meldrum, A., Boatner, L.A., White, C.W., and Ewing, R.C., Mater. Res. Innovations 3, 204 (2000).CrossRefGoogle Scholar
4Brus, L., in World Technology Evaluation Center Workshop Re-port on R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices in the United States, Proceedings of the May 8–9, 1997, Workshop.Google Scholar
5Siegel, R., Phys. Today Oct., 64 (1993).CrossRefGoogle Scholar
6Alivisatos, A.P., Science 271, 933 (1996).CrossRefGoogle Scholar
7Meldrum, A., White, C.W., Boatner, L.A., Anderson, I.M., Zuhr, R.A., Sonder, E., and Budai, J.D., and Henderson, D.O., Nucl. Instrum. Methods Phys. Res. B149, 957 (1999).CrossRefGoogle Scholar
8Budai, J.D., White, C.W., Withrow, S.P., Chisholm, M.F., Zhu, J.G., and Zuhr, R.A., Nature 390, 384 (1997).CrossRefGoogle Scholar
9Meldrum, A., Zuhr, R.A., Sonder, E., Budai, J.D., White, C.W., Boatner, L.A., Henderson, D.O., and Ewing, R.C., Appl. Phys. Lett. 74, 699 (1999).CrossRefGoogle Scholar
10Meldrum, A., Sonder, E., Zuhr, R.A., Anderson, I.M., Budai, J.D., White, C.W., Boatner, L.A., and Henderson, D.O., J. Mater. Res. 14, 4502 (1999).CrossRefGoogle Scholar
11McCaffrey, J.P., Sullivan, B.T., Fraser, J.W., and Callahan, D.L., Micron 27, 407 (1996).CrossRefGoogle Scholar
12Wunderlich, B., J. Cryst. Growth 48, 227 (1980).CrossRefGoogle Scholar
13Theodore, N.D., Alford, T.L., Carter, C.B., Mayer, J.W., and Cheung, N.W., Appl. Phys. A 54, 124 (1992).CrossRefGoogle Scholar
14Nesmeyanov, A.N., Vapor Pressure of the Chemical Elements (Elsevier, Amsterdam, The Netherlands, 1963).Google Scholar
15Wong-Leung, J., Williams, J.S., Elliman, R.G., Nygren, E., Eaglesham, D.J., Jacobson, D.C., and Poate, J.M., Nucl. Instrum. Methods Phys. Res. B96, 253 (1995).Google Scholar
16Follstaedt, D.M., Myers, S.M., Petersen, G.A., and Medernach, J.W., J. Electron. Mater. 25, 151 (1996).CrossRefGoogle Scholar
17Raineri, V., Fallica, P.G., Percolla, G., Battaglia, A., Barbagallo, M., and Campisano, S.U., J. Appl. Phys. 78, 3727 (1995).CrossRefGoogle Scholar
18Antoncik, E., Appl. Phys. A 56, 291 (1993).CrossRefGoogle Scholar
19Herrera Gomez, A., Rousseau, P.M., Materlik, G., Kendelewicz, T., Woicik, J.C., Griffin, P.B., Plummer, J., and Spicer, W.E., Appl. Phys. Lett. 68, 3090 (1996).CrossRefGoogle Scholar
20Wong-Leung, J., Nygren, E., and Williams, J.S., Appl. Phys. Lett. 67, 416 (1995).CrossRefGoogle Scholar
21Mezey, L.Z. and Giber, J., Jpn. J. Appl. Phys. 21, 1569 (1982).CrossRefGoogle Scholar
22Sheng, H.W., Lu, K., and Ma, E., Acta Mater. 46, 5195 (1998).CrossRefGoogle Scholar
23Sheng, H.W., Xu, J., Yu, L.G., Sun, X.K., Hu, Z.Q., and Lu, K., J. Mater. Res. 11, 2841 (1996).CrossRefGoogle Scholar
24Sheng, H.W., Ren, G., Peng, M., Hu, Z.Q., and Lu, K., Philos. Mag. Lett. 73, 179 (1996).CrossRefGoogle Scholar
25Zinkle, S.J. and Lee, E.H., Met. Trans. 21A, 1037 (1990).CrossRefGoogle Scholar
26Ishikawa, N., Awaji, M., Furuya, K., Birtcher, R.C., and Allen, C.W., Nucl. Instrum. Methods B 127/128, 123 (1997).CrossRefGoogle Scholar
27Follstaedt, D.M., Appl. Phys. Lett. 62, 1116 (1993).CrossRefGoogle Scholar
28Myers, S.M. and Follstaedt, D.M., J. Appl. Phys. 79, 1337 (1996).CrossRefGoogle Scholar
29Wong-Leung, J., Ascheron, C.E., Petravic, M., Elliman, R.G., and Williams, J.S., Appl. Phys. Lett. 66, 1231 (1995).CrossRefGoogle Scholar
30Meldrum, A., Zinkle, S.J., Boatner, L.A., and Ewing, R.C., Nature 395, 56 (1998).CrossRefGoogle Scholar
31Wampler, W.R., Myers, S.M., and Follstaedt, D.M., Phys. Rev. B 48, 4492 (1993).CrossRefGoogle Scholar