Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T14:12:50.039Z Has data issue: false hasContentIssue false

Nanocrystallization of gas atomized Cu47Ti33Zr11Ni8Si1 metallic glass

Published online by Cambridge University Press:  01 March 2006

S. Venkataraman*
Affiliation:
Leibniz-Institut für Festkörper- und Werkstofforschung Dresden (IFW) Dresden, Institut für Metallische Werkstoffe, D-01171 Dresden, Germany
S. Scudino
Affiliation:
Leibniz-Institut für Festkörper- und Werkstofforschung Dresden (IFW) Dresden, Institut für Metallische Werkstoffe, D-01171 Dresden, Germany
J. Eckert
Affiliation:
Fachgebiet (FG) Physikalische Metallkunde, Fachbereich (FB) 11 Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany; and Leibniz-Institut für Festkörper- und Werkstofforschung Dresden (IFW) Dresden, Institut für Metallische Werkstoffe, D-01171 Dresden, Germany
T. Gemming
Affiliation:
Leibniz-Institut für Festkörper- und Werkstofforschung Dresden (IFW) Dresden, Institut für Festkörperanalytik und Strukturforschung, D-01171 Dresden, Germany
C. Mickel
Affiliation:
Leibniz-Institut für Festkörper- und Werkstofforschung Dresden (IFW) Dresden, Institut für Metallische Werkstoffe, D-01171 Dresden, Germany
L. Schultz
Affiliation:
Leibniz-Institut für Festkörper- und Werkstofforschung Dresden (IFW) Dresden, Institut für Metallische Werkstoffe, D-01171 Dresden, Germany
D.J. Sordelet
Affiliation:
Material and Engineering Physics Program, Ames Laboratory (USDOE), Iowa State University, Ames, Iowa 50014; and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50014
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Cu47Ti33Zr11Ni8Si1 metallic glass powder was prepared by gas atomization. Decomposition in the amorphous alloy and primary crystallization has been studied by differential scanning calorimetry (DSC), x-ray diffraction (XRD), and transmission electron microscopy (TEM). The glassy powder exhibits a broad DSC exotherm prior to bulk crystallization. Controlled annealing experiments reveal that this exotherm corresponds to a combination of structural relaxation and nanocrystallization. A uniform featureless amorphous contrast is observed in the TEM prior to the detection of nanocrystals of 4–6 nm in size. High-resolution TEM studies indicate that this nanocrystalline phase has a close crystallographic relationship with the γ–CuTi phase having a tetragonal structure. The product of the main crystallization event is also nanocrystalline, hexagonal Cu51Zr14, having dimensions of 20 nm. However, there is no evidence for possible amorphous phase separation prior to the nanocrystallization events.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Greer, A.L.: Metallic glasses. Science 267, 1947 (1995).CrossRefGoogle ScholarPubMed
2.Fecht, H.J., Johnson, W.L.: Thermodynamic properties and metastability of bulk metallic glasses. Mater. Sci. Eng. A 375–377, 2 (2004).CrossRefGoogle Scholar
3.Löffler, J.F.: Bulk metallic glasses. Intermetallics 11, 529 (2003).CrossRefGoogle Scholar
4.Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).CrossRefGoogle Scholar
5.Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T.A., Macht, M.P.: Atomic diffusion in the supercooled liquid and glassy states of Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Phys. Rev. Lett. 75, 2364 (1995).CrossRefGoogle ScholarPubMed
6.Peker, A., Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
7.Schneider, S., Thiyagarajan, P., Johnson, W.L.: Formation of nanocrystals based on the decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. Appl. Phys. Lett. 68, 493 (1996).Google Scholar
8.Macht, M.P., Wanderka, N., Wiedenmann, A., Wollenberger, H., Wei, Q., Fecht, H.J., Close, S.G.: Decomposition of the supercooled liquid of the bulk amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5. Mater. Sci. Forum 225–227, 65 (1996).CrossRefGoogle Scholar
9.Liu, W., Johnson, W.L.: Precipitation of bcc nanocrystals in bulk Mg–Cu–Y amorphous alloys. J. Mater. Res. 11, 2388 (1996).CrossRefGoogle Scholar
10.Löffler, J.F., Bossuyt, S., Glade, S.C., Johnson, W.L., Wagner, W., Thiyagarajan, P.: Crystallization of bulk amorphous Zr– Ti(Nb)–Cu–Ni–Al. Appl. Phys. Lett. 77, 525 (2000).CrossRefGoogle Scholar
11.He, Y., Chen, H., Shiflet, G.J., Poon, S.J.: On the structural nature of aluminium based metallic glasses. Philos. Mag. Lett. 61, 297 (1990).CrossRefGoogle Scholar
12.Inoue, A., Kimura, H.M., Sasamori, K., Masumoto, T.: Ultrahigh strength of rapidly solidified Al96−xCr3Ce1Cox (x = 1,1.5, and 2%) alloys containing an icosahedral phase as a main component. Mater. Trans. JIM 35, 85 (1994).CrossRefGoogle Scholar
13.Zhong, Z.C., Jiang, X.Y., Greer, A.L.: Nanocrystallization in Al-based amorphous alloy. Philos. Mag. B 76, 505 (1997).CrossRefGoogle Scholar
14.Köster, U., Janlewing, R.: Fragility parameter and nanocrystallization of metallic glasses. Mater. Sci. Eng. A 375–377, 223 (2004).CrossRefGoogle Scholar
15.Calin, M., Köster, U.: Nanocrystallization of Al–Ni–Y and Al–Ni–Nd metallic glasses. Mater. Sci. Forum 269–272, 749 (1998).CrossRefGoogle Scholar
16.Foley, J.C., Allen, O.R., Perepezko, J.H.: Analysis of nanocrystal development in Al–Y–Fe and Al–Sm glasses. Scripta Mater. 35, 655 (1996).CrossRefGoogle Scholar
17.Allen, O.R., Foley, J.C., Perepezko, J.H.: Nanocrystal development during primary crystallization of amorphous alloys. Acta Mater. 46, 431 (1998).CrossRefGoogle Scholar
18.Omata, S., Tanaka, Y., Ishida, T., Sato, A., Inoue, A.: Nucleation and growth kinetics of small crystals in amorphous Al88Ce2Ni9Fe. Philos. Mag. A 76, 387 (1997).CrossRefGoogle Scholar
19.Tsai, A.P., Kamiyama, T., Kawamura, Y., Inoue, A., Masumoto, T.: Formation and precipitation mechanism of nanoscale Al particles in Al–Ni base amorphous alloys. Acta Mater. 45, 1477 (1997).CrossRefGoogle Scholar
20.Kelton, K.F.: A new model for nucleation in bulk metallic glasses. Philos. Mag. Lett. 77, 337 (1998).CrossRefGoogle Scholar
21.Kelton, K.F.: Time dependent nucleation in partitioning transformations. Acta Mater. 48, 1967 (2000).CrossRefGoogle Scholar
22.Schneider, S., Thiyagarajan, P., Geyer, U., Johnson, W.L.: SANS of bulk metallic ZrTiCuNiBe glasses. Phys. B 241–243, 918 (1997).CrossRefGoogle Scholar
23.Lee, K.L., Kui, H.W.: Phase separation in undercooled molten Pd80Si20: Part I. J. Mater. Res. 14, 3653 (1999).CrossRefGoogle Scholar
24.Löffler, J.F., Johnson, W.L.: Model for decomposition and nanocrystallization of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl. Phys. Lett. 76, 3394 (2000).CrossRefGoogle Scholar
25.Gangopadhyay, A.K., Croat, T.K., Kelton, K.F.: The effect of phase separation on subsequent crystallization in Al88Gd6La2Ni4. Acta Mater. 48, 4035 (2000).CrossRefGoogle Scholar
26.Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T., Hono, K.: In situ formed two- phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 (2004).CrossRefGoogle Scholar
27.Chou, C.P., Turnbull, D.: Transformation behaviour of Pd–Au–Si metallic glasses. J. Non-Cryst. Solids 17, 169 (1975).CrossRefGoogle Scholar
28.Chen, H.S.: Glass temperature, formation and stability of Fe,Co, Ni, Pd and Pt based glasses. Mater. Sci. Eng. 23, 151 (1976).CrossRefGoogle Scholar
29.Mattern, N., Kühn, U., Gebert, A., Gemming, T., Zinkevich, M., Wendrock, H., Schultz, L.: Microstructure and thermal stability of two phase amorphous Ni–Nb–Y alloy. Scripta Mater. 53, 271 (2005).CrossRefGoogle Scholar
30.Tanner, L.E., Ray, R.: Phase separation in Zr–Ti–Be metallic glasses. Scripta Metall. 14, 657 (1980).CrossRefGoogle Scholar
31.Nagahama, D., Ohkubo, T., Hono, K.: Crystallization of Zr36Ti24Be40 metallic glass. Scripta Mater. 49, 729 (2003).CrossRefGoogle Scholar
32.Deng, D., Argon, A.S.: Structural relaxation and embrittlement of Cu59Zr41 and Fe80B20 glasses. Acta Metall. 34, 2011 (1986).CrossRefGoogle Scholar
33.Bormann, R., Gärtner, F., Haider, F.: Determination of the free energy of equilibrium and metastable phases in the Cu–Zr system. Mater. Sci. Eng. 97, 79 (1988).CrossRefGoogle Scholar
34.Busch, R., Gärtner, F., Schneider, S., Bormann, R., Haasen, P. The earliest stage of the solid state amorphization reaction in the Zr–Co system, in Polycrystalline Thin Films: Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M.A., Floro, J.A., Sinclair, R., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 343 Pittsburgh, PA, 1994), p. 229.Google Scholar
35.Okumara, A.H., Inoue, A., Masumoto, T.: Heating rate dependence of two glass transitions and phase separation for a La55Al25Ni20 amorphous alloy. Acta Metall. Mater. 41, 915 (1993).CrossRefGoogle Scholar
36.Inoue, A., Chen, S., Masumoto, T.: Zr–Y base amorphous alloys with two glass transitions and two supercooled liquid regions. Mater. Sci. Eng. A 179–180, 346 (1994).CrossRefGoogle Scholar
37.Busch, R., Schneider, S., Peker, A., Johnson, W.L.: Decomposition and primary crystallization in Zr41.2Ti13.8Cu12.5Ni10Be22.5 melts. Appl. Phys. Lett. 67, 1544 (1995).CrossRefGoogle Scholar
38.Martin, I., Ohkubo, T., Ohnuma, M., Deconihout, B., Hono, K.: Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass. Acta Mater. 52, 4427 (2004).CrossRefGoogle Scholar
39.Choi-Yim, H., Busch, R., Johnson, W.L.: The effect of silicon on the glass forming abiltity of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites. J. Appl. Phys. 83, 7993 (1998).CrossRefGoogle Scholar
40.Miller, M.K., Russell, K.F., Martin, P.M., Busch, R., Johnson, W.L.: Characterization of bulk metallic glasses with the atom probe. J. Phys. IV 6, 217 (1996).Google Scholar
41.Glade, S.C., Löffler, J.F., Bossuyt, S., Johnson, W.L., Miller, M.K.: Crystallization of amorphous Cu47Ti34Zr11Ni8. J. Appl. Phys. 89, 1573 (2001).CrossRefGoogle Scholar
42.Miller, M.K., Glade, S.C., Johnson, W.L.: Phase separation in Cu47Ti33Zr11Ni8Si1. Surf. Interface Anal. 36, 598 (2004).CrossRefGoogle Scholar
43.Calin, M., Eckert, J., Schultz, L.: High strength Cu-Ti rich bulk metallic glasses and nanocomposites. Z. Metallkd. 94, 615 (2003).CrossRefGoogle Scholar
44.Calin, M., Stoica, M., Eckert, J., Yavari, A.R., Schultz, L.: Glass formation and crystallization of Cu47Ti33Zr11Ni8X1 (X = Fe, Si, Sn, Pb) alloys. Mater. Sci. Eng. A 392, 169 (2005).CrossRefGoogle Scholar
45.Sordelet, D.J., Kramer, M.J., Besser, M.F., Rozhkova, E.: Time resolved studies of Ti34−x Cu47Zr11Ni8Six metallic glass devitrification using high temperature x-ray powder diffraction. J. Non-Cryst. Solids 290, 163 (2001).CrossRefGoogle Scholar
46.Suryanarayana, C. Rapid solidification, in Processing of Metals and Alloys, Materials Science & Technology (A comprehensive treatment), Vol. 15, edited by Cahn, R.W., Haasen, P., and Kramer, E.J. (VCH Publishers, Weinheim, Germany, 1991), p. 64.Google Scholar
47.Bae, D.H., Lee, M.H., Sordelet, D.J.: Plasticity in Ni59Zr20Ti16Si2Sn3 metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders. Appl. Phys. Lett. 83, 2312 (2003).CrossRefGoogle Scholar
48.Inoue, A., Masumoto, T., Chen, H.S.: Enthalpy relaxation behaviour of metal–metal (Zr–Cu) amorphous alloys upon annealing. J. Mater. Sci. 20, 4057 (1985).CrossRefGoogle Scholar
49. PDF # 07-0114, PCPDF Version 2.2 (JCPDS-International Centre for Diffraction Data (ICDD), Newton Square, PA, 2001).Google Scholar
50.Lin, X.H., Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
51.Spaepen, F., Turnbull, D. Formation of metallic glasses, in Rapidly Quenched Metals, edited by Grant, N.J. and Giessen, B.C. (MIT Press, Cambridge, MA, 1976), p. 205.Google Scholar
52.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
53.Spaepen, F., Turnbull, D.: Metallic glasses. Ann. Rev. Phys. Chem. 35, 241 (1984).CrossRefGoogle Scholar
54.Lu, Z.P., Liu, C.T.: A new glass forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
55.Lawley, A.: Atomization: The production of metal powders. Monographs in P/M series No. 1. (MPIF, Princeton, NJ, 1992).Google Scholar
56.van den Beukel, A., Radelaar, S.: On the kinetics of structural relaxation in metallic glasses. Acta Metall. Mater. 31, 419 (1983).CrossRefGoogle Scholar
57.Cohen, M.H., Turnbull, D.: Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164 (1959).CrossRefGoogle Scholar
58.Vandenbeukel, A., Sietsma, J.: The glass transition as a free volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 (1990).CrossRefGoogle Scholar
59.Daniel, B.S.S., Reger-Leonhard, A., Heilmaier, M., Eckert, J., Schultz, L.: Thermal relaxation and high temperature creep of Zr55Cu30Al10Ni5 bulk metallic glass. Mech. Time-Depend. Mater. 6, 193 (2002).CrossRefGoogle Scholar
60.Drijver, J.W., Mulder, A.L., and Radelaar, S.: Compositional effects in the observation of structural relaxation in metallic glasses by DSC, in Proc. 4th Int. Conf. on Rapidly Quenched Metals, Sendai, Japan, edited by Masumoto, T. and Suzuki, K., (Japan Institute of Metals, Sendai, Japan, 1982), p. 535.Google Scholar
61.Chen, H.S.: Kinetics of low temperature structural relaxation in two (Fe–Ni)-based metallic glasses. J. Appl. Phys. 52, 1868 (1981).CrossRefGoogle Scholar
62.Chen, H.S.: On the mechanisms of structural relaxation in Pd48Ni32P20 glass. J. Non-Cryst. Solids 46, 289 (1981).CrossRefGoogle Scholar
63.Johari, G.P.: Calorimetric features of high enthalpy amorphous solids and glass softening temperature of water. J. Phys. Chem. B 107, 9063 (2003).CrossRefGoogle Scholar
64.Egami, T.: Structural relaxation in amorphous alloys-compositional short range ordering. Mater. Res. Bull. 13, 557 (1978).CrossRefGoogle Scholar
65.Inoue, A., Masumoto, T., Chen, H.S.: Enthalpy relaxation behaviour of (Fe,Co,Ni)75Si10B15 amorphous alloys upon low temperature annealing. J. Mater. Sci. 19, 3953 (1984).CrossRefGoogle Scholar
66.Ohlberg, S.M., Golob, H.R., and Stickler, D.W.: Crystal nucleation by glass in glass separation, in Symposium on Nucleation and Crystallization in Glasses and Melts, edited by Reser, M.K., Smith, G., and Insley, H. (The American Ceramic Society, Columbus, OH 1962), p. 55.Google Scholar
67.Cahn, J.W., Charles, R.J.: Initial stages of phase separation in glasses. Phys. Chem. Glasses 6, 181 (1965).Google Scholar
68.Ramsden, A.H., James, P.F.: The effects of amorphous phase separation on crystal nucleation kinetics in BaO-SiO2 glasses. 1. General survey. J. Mater. Sci. 19, 1406 (1984).CrossRefGoogle Scholar
69.Goodhew, P.J., Humphreys, J., and Beanland, R., Electron Microscopy and Analysis (Taylor and Francis, London and New York, 2001).Google Scholar
70.Scott, M.G. Crystallization, in Crystallization in Amorphous Metallic Alloys, edited by Luborksy, F.E. (Butterworths, London, UK, 1983), p. 144.CrossRefGoogle Scholar
71.Köster, U., Herold, U. Crystallization of metallic glasses, in Glassy Metals I, Topics in Applied Physics, Vol. 46, edited by Güntherodt, H.J. and Beck, H. (Springer-Verlag, Heidelberg, Berlin, 1981), p. 225.CrossRefGoogle Scholar
72.Concustell, A., Révész, A., Surinach, S., Varga, L.K., Heunen, G., Baro, M.D.: Microstructural evolution during decomposition and crystallization of the Cu60Zr20Ti20 amorphous alloy. J. Mater. Res. 19, 505 (2004).CrossRefGoogle Scholar
73.Chen, L.C., Spaepen, F.: Calorimetric evidence for the microquasicrystalline structure of amorphous Al-transition metal alloys. Nature 336, 366 (1988).CrossRefGoogle Scholar
74.De Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., Niessen, A.K.: Cohesion in Metals (Elsevier Science Publishers, North-Holland, Amsterdam, The Netherlands, 1988).Google Scholar