Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T06:27:54.418Z Has data issue: false hasContentIssue false

Nanocrystalline MnFe2O4 produced by niobium doping

Published online by Cambridge University Press:  31 January 2011

T. K. Kundu
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta, 700 032, India
D. Chakravorty
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta, 700 032, India, and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560 064, India
Get access

Abstract

Nanosized MnFe2O4 phase with diameters in the range 13.7 to 100 nm were produced by calcination and sintering treatments in the system zNb2O5 · (50 – z)MnO · 50Fe2O3 with z having values between 0 and 20. Nb5+ ions are believed to give rise to vacancies in the Mn2+ sites, which break up the coupling of ferrimagnetically active oxygen polyhedra. The Curie temperature decreases as the size of the MnFe2O4 phase is reduced. This is explained on the basis of a decrease in the number of exchange pairs of the type Mn2+–Fe3+. The coercivity increases with a decrease in the size of the ferrimagnetic phase. This is believed to arise due to a decrease in saturation magnetization as the size of the MnFeO4 phase is reduced.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Farle, M. and Baberschke, K., Phys. Rev. Lett. 58, 511 (1987).Google Scholar
2.Tang, Z.X., Sorensen, C.M., Klabunde, K.J., and Hadjipanayis, G.C., Phys. Rev. Lett. 67, 3602 (1991).CrossRefGoogle Scholar
3.Van der Zaag, P.J., Noordermeer, A., Johnson, M.T., and Bongers, P.F., Phys. Rev. Lett. 68, 3112 (1992).Google Scholar
4.Chatterjee, A., Das, D., Pradhan, S.K., and Chakravorty, D., J. Magn. Magn. Mater. 127, 214 (1993).Google Scholar
5.Li, J.E., Dai, X., Chow, A., and Viehland, D., J. Mater Res. 10, 926 (1995).CrossRefGoogle Scholar
6.Xu, Z., Di, X., Li, J.F., and Viehland, D., Appl. Phys. Lett. 68, 1628 (1996).CrossRefGoogle Scholar
7.Warren, B.E., X-ray Diffraction (Addison-Wesley, Reading, MA, 1980), p. 253.Google Scholar
8.Roy, B. and Chakravorty, D., J. Phys. Condens. Matter 2, 9323 (1990).CrossRefGoogle Scholar
9.Pauling, L., Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1945).Google Scholar
10.Frei, F.H., Shtrikman, S., and Treves, D., Phys. Rev. 106, 446 (1957).CrossRefGoogle Scholar
11.Kneller, E.F. and Luborsky, F.E., J. Appl. Phys. 34, 656 (1963).CrossRefGoogle Scholar
12.Sato, T., Iijima, T., Seki, M., and Inagaki, N., J. Magn. Magn. Mater. 65, 252 (1987).Google Scholar
13.Stampanoni, M., Vaterlans, A., Aeschlimann, M., and Meier, F.. Phys. Rev. Lett. 59, 2483 (1987).Google Scholar
14.Kenning, G.G., Slaughter, J.M., and Cowen, J.A., Phys. Rev. Lett. 59, 2596 (1987).CrossRefGoogle Scholar
15.Schneider, C.M., Bressler, P., Schuster, P., and Kirschner, J., Phys. Rev. Lett. 64, 1059 (1990).Google Scholar
16.Barber, M.N. in Phase Transitions and Critical Phenomena, edited by Domb, C. and Lebowitz, J.L. (Academic, New York, 1983), Vol. 8, p. 145.Google Scholar
17.van Groenou, A.B., Bongers, P.F., and Stuyts, A.L., Mater. Sci. Eng. 3, 317 (1968/1969).CrossRefGoogle Scholar
18.Zhang, Z.J., Wang, Z.L., Chakoumakos, B.C., and Yin, J.S., J. Am. Chem. Soc. 120, 1800 (1998).CrossRefGoogle Scholar