Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T03:31:21.508Z Has data issue: false hasContentIssue false

Nanocomposite stability in Fe-, Co-, and Mn-based perovskite/spinel systems

Published online by Cambridge University Press:  11 April 2012

Joerg Hoffmann*
Affiliation:
Institute of Materials Physics, University of Goettingen, 37077 Goettingen, Germany
Sven Schnittger
Affiliation:
Institute of Materials Physics, University of Goettingen, 37077 Goettingen, Germany
Jonas Norpoth
Affiliation:
Institute of Materials Physics, University of Goettingen, 37077 Goettingen, Germany
Stephanie Raabe
Affiliation:
Institute of Materials Physics, University of Goettingen, 37077 Goettingen, Germany
Thilo Kramer
Affiliation:
Institute of Materials Physics, University of Goettingen, 37077 Goettingen, Germany
Christian Jooss
Affiliation:
Institute of Materials Physics, University of Goettingen, 37077 Goettingen, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Fabrication of thin film nanocomposites via decomposition and self-assembly from the vapor phase is a promising path for cost-effective fabrication of multifunctional materials. In particular, oxides as a new class of energy materials allow for rich functionalities, e.g., by combining p- and n-doped systems in catalytic or light harvesting units. Combining A-site doped perovskites ABO3 with CoFe2O4 spinel, we have investigated thin film phase composition and nanocomposite morphology in the pseudobinary system La0.6Sr0.4BO3–CoFe2O4 for B = Fe, Co, and Mn. We observe formation of an epitaxial two-phase nanocomposite for B = Fe, i.e., the coexistence of La0.6Sr0.4FeO3 and CoFe2O4. In contrast, for B = Co or Mn nanocomposites are formed, where perovskite La0.6Sr0.4BO3 solid solutions coexists with Co-rich spinel and periclase phases. We derive conclusions for the preparation of perovskite-spinel nanocomposites with well-designed doping levels.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123 (2005).CrossRefGoogle Scholar
2.Nan, C., Bichurin, M.I., Dong, S., Viehland, D., and Srinivasan, G.: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
3.Yang, F., Shtein, M., and Forrest, S.R.: Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat. Mater. 4, 37 (2005).CrossRefGoogle Scholar
4.Yoon, J., Cho, S., Kim, J., Lee, J., Bi, Z., Serquis, A., Zhang, X., Manthiram, A., and Wang, H.: Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid oxide fuel cells. Adv. Funct. Mater. 19, 3868 (2009).CrossRefGoogle Scholar
5.MacManus-Driscoll, J.L.: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).CrossRefGoogle Scholar
6.MacManus-Driscoll, J.L., Zerrer, P., Wang, H., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., and Jia, Q.: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).CrossRefGoogle ScholarPubMed
7.Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 (2004).CrossRefGoogle ScholarPubMed
8.Zavaliche, F., Zheng, H., Mohaddes-Ardabili, L., Yang, S., Zhan, Q., Shafer, P., Reilly, E., Chopdekar, R., Jia, Y., Wright, P., Schlom, D., Suzuki, Y., and Ramesh, R.: Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793 (2005).CrossRefGoogle ScholarPubMed
9.Zhan, Q., Yu, R., Crane, S.P., Zheng, H., Kisielowski, C., and Ramesh, R.: Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902 (2006).CrossRefGoogle Scholar
10.Tokura, Y.: Colossal Magnetoresistive Oxides (Gordon and Breach Science Publishers, Amsterdam, 2000).CrossRefGoogle ScholarPubMed
11.Tomioka, Y., Asamitsu, A., Kuwahara, H., Moritomo, Y., and Tokura, Y.: Magnetic-field-induced metal-insulator phenomena in Pr1-xCaxMnO3 with controlled charge-ordering instability. Phys. Rev. B 53, R1689 (1996).CrossRefGoogle ScholarPubMed
12.Asamitsu, A., Tomioka, Y., Kuwahara, H., and Tokura, Y.: Current switching of resistive states in magnetoresistive manganites. Nature 388, 50 (1997).CrossRefGoogle Scholar
13.Zakhvalinskii, V.S., Laiho, R., Lashkul, A.V., Lisunov, K.G., Lähderanta, E., Nekrasova, Yu.S., and Petrenko, P.A.: Hopping conductivity of La1-xSrxMn1-yFeyO3. J. Phys. Conf. Ser. 303, 012066 (2011).CrossRefGoogle Scholar
14.Jonker, G.H.: Analysis of the semiconducting properties of cobalt ferrite. J. Phys. Chem. Solids 9, 165 (1959).CrossRefGoogle Scholar
15.Man, I.C., Su, H-Y., Calle-Vallejo, F., Hansen, H.A., Martinez, J.I., Inoglu, N.G., Kitchin, J., Jaramillo, T.F., Nørskov, J.K., and Rossmeisl, J.: Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2, 1159 (2011).CrossRefGoogle Scholar
16.Roiter, B.D. and Paladino, A.E.: Phase equilibria in the ferrite region of the system Fe-Co-O. J. Am. Ceram. Soc. 45, 128 (1962).CrossRefGoogle Scholar
17.Axelsson, A-K., Aguesse, F., Spillane, L., Valant, M., McComb, D.W., and Alford, N.McN.: Quantitative strain analysis and growth mode of pulsed laser deposited epitaxial CoFe2O4 thin films. Acta Mater. 59, 514 (2011).CrossRefGoogle Scholar
18.Kim, K.J., Kim, H.K., Park, Y.R., and Park, J.Y.: Effects of Mn substitution of Co and Fe in spinel CoFe2O4 thin films. J. Magn. Magn. Mater. 304, e106 (2006).CrossRefGoogle Scholar
19.Kubaschewski, O., Alcock, C.B., and Spencer, P.J.: Materials Thermochemistry (Pergamon Press, New York, 1993).Google Scholar
20.Navrotski, A. and Kleppa, O.J.: Thermodynamics of formation of simple spinels. J. Inorg. Nucl. Chem. 30, 479 (1968).CrossRefGoogle Scholar
21.Calle-Vallejo, F., Martínez, J.I., García-Lastra, J.M., Mogensen, M., and Rossmeisl, J.: Trends in stability of perovskite oxides. Angew. Chem. Int. Ed. 49, 7699 (2010).CrossRefGoogle ScholarPubMed
22.Cheng, J. and Navrotsky, A.: Enthalpies of formation of LaMO3 perovskites (M = Cr, Fe, Co, and Ni). J. Mater. Res. 20, 191 (2005).CrossRefGoogle Scholar
23.Jung, I-H., Decterov, S.A., Pelton, A.P., Kim, H-M., and Kang, Y-B.: Thermodynamic evaluation and modeling of the Fe–Co–O system. Acta Mater. 52, 507 (2004).CrossRefGoogle Scholar
24.Filonova, E.A., Demina, A.N., Kleibaum, E.A., Gavrilova, L.Y., and Petrov, A.N.: Phase equilibria in the system LaMnO3+d–SrMnO3–LaFeO3–SrFeO3–d. Inorg. Mater. 42, 443 (2006).CrossRefGoogle Scholar
25.Aksenova, T.V., Anan’ev, M.V., Gavrilova, L.Y., and Cherepanov, V.A.: Phase equilibria and crystal structures of solid solutions in the system LaCoO3–d–SrCoO2.5±d–SrFeO3–d–LaFeO3–d. Inorg. Mater. 43, 296 (2007).CrossRefGoogle Scholar
26.Subramanian, R. and Dieckmann, R.: Limits of thermodynamic stability of cobalt-iron-manganese mixed oxides at 1200 °C. J. Am. Ceram. Soc. 75, 382 (1992).CrossRefGoogle Scholar
27.Kaul, A.R., Gorbenko, O.Y., and Kamenev, A.A.: The role of heteroepitaxy in the development of new thin-film oxide-based functional materials. Russ. Chem. Rev. 73, 861 (2004).CrossRefGoogle Scholar
28.Zheng, H., Zhan, Q., Zavaliche, F., Sherburne, M., Straub, F., Cruz, M.P., Chen, L-Q., Dahmen, U., and Ramesh, R.: Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 6, 1401 (2006).CrossRefGoogle ScholarPubMed
29.Shchukin, V.A. and Bimberg, D.: Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125 (1999).CrossRefGoogle Scholar
30.Li, Z., Fisher, E.S., Liu, J.Z., and Nevitt, M.V.: Single-crystal elastic constants of Co-Al and Co-Fe spinels. J. Mater. Sci. 26, 2621 (1991).CrossRefGoogle Scholar
31.Sumino, Y., Kumazwa, M., Nishizawa, O., and Pluschkell, W.: The elastic constants of single crystal Fe1-xO, MnO and CoO and the elasticity of stoichiometric magnesiowustite. J. Phys. Earth 28, 475 (1980).CrossRefGoogle Scholar
32.Varghese, B., Zhang, Y., Dai, L., Tan, V.B.C., Lim, C.T., and Sow, C-H.: Structure-mechanical property of individual cobalt oxide nanowires. Nano Lett. 8, 3226 (2008).CrossRefGoogle ScholarPubMed
33.Orlovskaya, N., Anderson, H., Brodnikovskyy, M., Lugovy, M., and Reece, M.J.: Inelastic deformation behavior of La0.6Sr0.4FeO3 perovskite. J. Appl. Phys. 100, 026102 (2006).CrossRefGoogle Scholar
34.Rajendran, V., Kumaran, S.M., Sivasubramanian, V., Jayakumar, T., and Raj, B.: Anomalies in elastic moduli and ultrasonic attenuation near ferromagnetic transition temperature in La0.67Sr0.33MnO3 perovskite. Phys. Status Solidi A 195, 350 (2003).CrossRefGoogle Scholar
35.Srolovitz, D.J.: On the stability of surfaces of stressed solids. Acta Metall. Mater. 37, 621 (1989).CrossRefGoogle Scholar