Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T11:00:19.713Z Has data issue: false hasContentIssue false

Nano-alloys Synthesized by Controlled Crystallization from Supercooled Atomic Clusters of Elements

Published online by Cambridge University Press:  03 March 2011

X.K. Meng
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
A.H.W. Ngan*
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Materials in nanocrystalline forms are well known to possess unusual and interesting properties when compared to the bulk conditions, and these open up an exciting range of novel applications. The key step involved in the systematic exploitation of nanocrystals for real applications lies in the development of reliable methods to synthesize nanocrystals of arbitrary chemical compositions in a range of crystal sizes. In particular, metallic alloy nanocrystals pose a special challenge. We demonstrate that nano-to-micro-sized crystals of intermetallic nickel–aluminide (Ni3Al) ranging from approximately 3 nm to over 100 nm in size can be synthesized by co-sputtering from elemental Ni and Al onto unheated, incompatible organic substrates, followed by controlled postdeposition heat treatment at mild temperatures. The crystal size of approximately 3 nm here is the smallest ever reported for monolithic ordered Ni3Al.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gleiter, H., Acta Mater. 48, 1 (2000).Google Scholar
2Ovid’ko, I.A., Science 295, 2386 (2002).CrossRefGoogle ScholarPubMed
3Manna, L., Milliron, D.J., Meisel, A., Scher, E.C. and Alivisatos, A.P., Nature Mater. 2, 382 (2003).Google Scholar
4McFadden, S.X., Mishra, R.S., Valiev, R.Z., Zhilyaev, A.P. and Mukherjee, A.K., Nature 398, 684 (1999).Google Scholar
5Chianelli, R.R., Berhault, G., Santiago, P., Mendoza, D., Espinosa, A., Ascencio, J.A. and Yacaman, M.J., Mater. Tech. 15, 54 (2000).Google Scholar
6Lou, Y.B., Maye, M.M., Han, L., Luo, J. and Zhong, C.J., Chem. Commun. 5, 473 (2001).CrossRefGoogle Scholar
7McHenry, M.E., Willard, M.A. and Laughlin, D.E., Prog. Mater. Sci. 44, 291 (1999).CrossRefGoogle Scholar
8Gorria, P., Prida, V.M., Tejedor, M., Hernando, B. and Sanchez, M.L., Physica B 299, 215 (2001).Google Scholar
9Petzold, J., Scr. Mater. 48, 895 (2003).CrossRefGoogle Scholar
10Ng, H.P. and Ngan, A.H.W., J. Appl. Phy. 88, 2609 (2000).CrossRefGoogle Scholar
11Holtz, R.L., Provenzano, V. and Imam, M.A., Nano. Mater. 7, 259 (1996).Google Scholar
12Saotome, Y., Imai, K., Shioda, S., Shimizu, S. and Zhang, T., Inoue, A., Intermetallics 10, 1241 (2002).Google Scholar
13Pushin, V.G., Kourov, N.I., Kuntsevich, T.E., Kuranova, N.N., Matveeva, N.M. and Yurchenko, L.I.Phys. Met. Metall. 94, S107 (2002)Google Scholar
14Wang, C.Y., Zhou, Y., Zhu, Y.R., Liu, H.J. and Chen, Z.Y., Mater. Res. Bull. 35, 1463 (2000).Google Scholar
15Pithawalla, Y.B., El-Shall, M.S. and Deevi, S.C., Intermetallics 8, 1225 (2000).Google Scholar
16Pithawalla, Y.B., Deevi, S.C. and El-Shall, M.S., Mat. Sci. Eng. A329-331, 92 (2002).Google Scholar
17Samwer, K., Fecht, H.J. and Johnson, W.L. in Glassy Metals III - Amorphization Techniques, Catalysis, Electronic and Ionic Structure, edited by Beck, H. and Güntherodt, H-J. (Springer-Verlag, Berlin, Heidelberg, 1994), p. 5.Google Scholar
18Kornilov, I.I. in Intermetallic Compounds, edited by Westbrook, J.H. (John Wiley & Sons, New York, 1967), p. 349.Google Scholar
19Ngan, A.H.W., Pethica, J.B. and Ng, H.P., J. Mater. Res. 18, 382 (2003).Google Scholar
20Ma, E., J. Mater. Res. 9, 592 (1994).CrossRefGoogle Scholar
21Zhou, G.F., Zwanenburg, M.J. and Bakker, H., J. Appl. Phys. 78, 3438 (1995).Google Scholar
22Cho, Y.S. and Koch, C.C., J. Alloy. Cmpds. 194, 287 (1993).Google Scholar
23He, L. and Ma, E., Mat. Sci. Eng. A, 204, 240 (1995).Google Scholar
24Lu, L., Lai, M. and Zhang, S., J. Mater. Proc. Tech. 48, 683 (1995).Google Scholar
25Huang, Y., Aziz, M.J., Hutchinson, J.W., Evans, A.G., Saha, R. and Nix, W.D., Acta Mater. 49, 2853 (2001).Google Scholar
26Wang, L., Liu, H., Chen, K. and Hu, Z., J. Mater. Res. 13, 1497 (1998).CrossRefGoogle Scholar
27Ng, H.P., Meng, X.K. and Ngan, A.H.W., Scr. Mater. 39, 1737 (1999).Google Scholar
28Petzow, G. and Effenberg, G.Ternary Alloys - A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Vol. 7, (VCH, Weinheim, 1988), p. 434.Google Scholar
29Escher, C., Neves, S. and Gottstein, G. in Proceedings of 3rd International Conference on Recrystallization and Related Topics, edited by McNelly, T.R. (Monterey Institute of Advanced Studies, Monterey, CA, 1997), pp. 645652.Google Scholar
30Banerjee, R., Thompson, G.B., Viswanathan, G.B. and Fraser, H.L., Philos. Mag. Lett. 82, 623 (2002).Google Scholar
31Ng, H.P. and Ngan, A.H.W., J. Mater. Res. 17, 2085 (2002).Google Scholar
32de Almeida, P., Schaublin, R., Almazouzi, A., Victoria, M. and Levy, F., Thin Solid Films 368, 26 (2000).CrossRefGoogle Scholar
33Guo, W.H. and Kui, H.W., Acta Mater. 48, 2117 (2000).Google Scholar
34Valiev, R.Z., Mater. Sci. Forum, 343-3, 773 (2000).Google Scholar