Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T23:27:34.575Z Has data issue: false hasContentIssue false

Multiscale porous graphene oxide network with high packing density for asymmetric supercapacitors

Published online by Cambridge University Press:  14 December 2017

Liming Wan
Affiliation:
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; and Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
Shuo Sun
Affiliation:
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; and Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
Teng Zhai*
Affiliation:
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; and Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
Serguei V. Savilov
Affiliation:
Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
Valery V. Lunin
Affiliation:
Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
Hui Xia*
Affiliation:
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; and Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In this article, we report the synthesis of highly packed graphene oxide-based electrodes (1.25 g/cm3) with a three-dimensional multiscale porous structure (denoted as MPGP) through the ZnO nanodisk (100–500 nm) template and subsequent H2O2 treatment. Consequently, MPGP with a macropore diameter of 100 nm and a mesopore diameter of 2–3 nm was fabricated as the electrode for supercapacitors (SCs). Significantly, the MPGP achieves a high-volumetric capacitance of 327 F/cm3 (262 F/g) at a current density of 1 A/g and retains 240 F/cm3 (192 F/g) at a current density of 16 A/g in 3 M KOH solution. More importantly, it was also capable of delivering a high-volumetric energy density as well as power density in a SC device. Our work shows that the capability of preparing highly packed graphene-based electrodes with high-volumetric as well as specific capacitance is critical for the application of SCs.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Tianyu Liu

References

REFERENCES

Zhai, T., Wan, L., Sun, S., Chen, Q., Sun, J., Xia, Q., and Xia, H.: Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29, 1604167 (2017).CrossRefGoogle Scholar
Zhu, C., Liu, T., Qian, F., Chen, W., Chandrasekaran, S., Yao, B., Song, Y., Duoss, E.B., Kuntz, J.D., Spadaccini, C.M., Worsley, M.A., and Li, Y.: 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15(Suppl. C), 107 (2017).Google Scholar
Yao, B., Huang, L., Zhang, J., Gao, X., Wu, J., Cheng, Y., Xiao, X., Wang, B., Li, Y., and Zhou, J.: Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28, 6353 (2016).Google Scholar
Hu, Z., Xiao, X., Jin, H., Li, T., Chen, M., Liang, Z., Guo, Z., Li, J., Wan, J., Huang, L., Zhang, Y., Feng, G., and Zhou, J.: Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method. Nat. Commun. 8, 15630 (2017).Google Scholar
Huang, P., Lethien, C., Pinaud, S., Brousse, K., Laloo, R., Turq, V., Respaud, M., Demortière, A., Daffos, B., Taberna, P.L., Chaudret, B., Gogotsi, Y., and Simon, P.: On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 351, 691 (2016).CrossRefGoogle ScholarPubMed
Zhai, T., Lu, X., Wang, H., Wang, G., Mathis, T., Liu, T., Li, C., Tong, Y., and Li, Y.: An electrochemical capacitor with applicable energy density of 7.4 W h/kg at average power density of 3000 W/kg. Nano Lett. 15, 3189 (2015).Google Scholar
Xiao, X., Song, H., Lin, S., Zhou, Y., Zhan, X., Hu, Z., Zhang, Q., Sun, J., Yang, B., Li, T., Jiao, L., Zhou, J., Tang, J., and Gogotsi, Y.: Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 11296 (2016).Google Scholar
Zhai, T., Lu, X., Ling, Y., Yu, M., Wang, G., Liu, T., Liang, C., Tong, Y., and Li, Y.: A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13−x. Adv. Mater. 26, 5869 (2014).Google Scholar
Zhang, F., Liu, T., Hou, G., Kou, T., Yue, L., Guan, R., and Li, Y.: Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9, 2875 (2016).Google Scholar
Zhao, J., Jiang, Y., Fan, H., Liu, M., Zhuo, O., Wang, X., Wu, Q., Yang, L., Ma, Y., and Hu, Z.: Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure–performance relationship. Adv. Mater. 29, 1604569 (2017).Google Scholar
Oschatz, M., Boukhalfa, S., Nickel, W., Hofmann, J.P., Fischer, C., Yushin, G., and Kaskel, S.: Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon 113(Suppl. C), 283 (2017).Google Scholar
Wu, Z-S., Tan, Y-Z., Zheng, S., Wang, S., Parvez, K., Qin, J., Shi, X., Sun, C., Bao, X., Feng, X., and Müllen, K.: Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors. J. Am. Chem. Soc. 139, 4506 (2017).Google Scholar
Wu, Z-S., Zheng, Y., Zheng, S., Wang, S., Sun, C., Parvez, K., Ikeda, T., Bao, X., Müllen, K., and Feng, X.: Stacked-layer heterostructure films of 2D thiophene nanosheets and graphene for high-rate all-solid-state pseudocapacitors with enhanced volumetric capacitance. Adv. Mater. 29, 1602960 (2017).Google Scholar
Zhang, F., Liu, T., Li, M., Yu, M., Luo, Y., Tong, Y., and Li, Y.: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097 (2017).Google Scholar
Kim, T., Jung, G., Yoo, S., Suh, K.S., and Ruoff, R.S.: Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7, 6899 (2013).CrossRefGoogle ScholarPubMed
Dutta, S., Bhaumik, A., and Wu, K.C.W.: Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574 (2014).Google Scholar
Forse, A.C., Griffin, J.M., Merlet, C., Carretero-Gonzalez, J., Raji, A-R.O., Trease, N.M., and Grey, C.P.: Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).Google Scholar
Zhu, C., Liu, T., Qian, F., Han, T.Y-J., Duoss, E.B., Kuntz, J.D., Spadaccini, C.M., Worsley, M.A., and Li, Y.: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448 (2016).Google Scholar
Xiong, Z., Liao, C., Han, W., and Wang, X.: Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 27, 4469 (2015).Google Scholar
Xu, Y., Chen, C-Y., Zhao, Z., Lin, Z., Lee, C., Xu, X., Wang, C., Huang, Y., Shakir, M.I., and Duan, X.: Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15, 4605 (2015).Google Scholar
Jiang, L., Sheng, L., Long, C., and Fan, Z.: Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11, 471 (2015).Google Scholar
Kou, T., Yao, B., Liu, T., and Li, Y.: Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J. Mater. Chem. A 5, 17151 (2017).Google Scholar
Zhai, T., Wang, F., Yu, M., Xie, S., Liang, C., Li, C., Xiao, F., Tang, R., Wu, Q., Lu, X., and Tong, Y.: 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale 5, 6790 (2013).Google Scholar
Wan, Y-J., Zhu, P-L., Yu, S-H., Sun, R., Wong, C-P., and Liao, W-H.: Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon 122(Suppl. C), 74 (2017).Google Scholar
Ferrero, G.A., Sevilla, M., and Fuertes, A.B.: Flexible, free-standing and holey graphene paper for high-power supercapacitors. ChemNanoMat 2, 1055 (2016).Google Scholar
Tang, C., Li, B-Q., Zhang, Q., Zhu, L., Wang, H-F., Shi, J-L., and Wei, F.: CaO-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 26, 577 (2016).CrossRefGoogle Scholar
Wang, H., Yan, T., Liu, P., Chen, G., Shi, L., Zhang, J., Zhong, Q., and Zhang, D.: In situ creating interconnected pores across 3D graphene architectures and their application as high performance electrodes for flow-through deionization capacitors. J. Mater. Chem. A 4, 4908 (2016).Google Scholar
Liu, K., Chen, Y-M., Policastro, G.M., Becker, M.L., and Zhu, Y.: Three-dimensional bicontinuous graphene monolith from polymer templates. ACS Nano 9, 6041 (2015).Google Scholar
Xu, F., Lin, T., Bi, H., and Huang, F.: Graphene-like carbon with three-dimensional periodicity prepared from organic-inorganic templates for energy storage application. Carbon 111(Suppl. C), 128 (2017).Google Scholar
Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N.O., Huang, Y., and Duan, X.: Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014).Google Scholar
Zhao, Y., Jiang, P., and Xie, S-S.: ZnO-template-mediated synthesis of three-dimensional coral-like MnO2 nanostructure for supercapacitors. J. Power Sources 239(Suppl. C), 393 (2013).Google Scholar
Zhai, T., Xie, S., Zhao, Y., Sun, X., Lu, X., Yu, M., Xu, M., Xiao, F., and Tong, Y.: Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity. CrystEngComm 14, 1850 (2012).Google Scholar
Degen, A. and Kosec, M.: Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J. Eur. Ceram. Soc. 20, 667 (2000).Google Scholar
Bae, J.G., Park, M., Kim, D.H., Lee, E.Y., Kim, W-S., and Seo, T.S.: Tunable three-dimensional graphene assembly architectures through controlled diffusion of aqueous solution from a micro-droplet. NPG Asia Mater. 8, e329 (2016).CrossRefGoogle Scholar
Ye, X., Zhou, Q., Jia, C., Tang, Z., Zhu, Y., and Wan, Z.: Producing large-area, foldable graphene paper from graphite oxide suspensions by in-situ chemical reduction process. Carbon 114(Suppl. C), 424 (2017).Google Scholar
Chi, K., Zhang, Z., Xi, J., Huang, Y., Xiao, F., Wang, S., and Liu, Y.: Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl. Mater. Interfaces 6, 16312 (2014).CrossRefGoogle ScholarPubMed
Zhao, J., Lai, H., Lyu, Z., Jiang, Y., Xie, K., Wang, X., Wu, Q., Yang, L., Jin, Z., Ma, Y., Liu, J., and Hu, Z.: Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27, 3541 (2015).CrossRefGoogle ScholarPubMed
Wang, G., Wang, H., Lu, X., Ling, Y., Yu, M., Zhai, T., Tong, Y., and Li, Y.: Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26, 2676 (2014).Google Scholar
Shu, K., Wang, C., Li, S., Zhao, C., Yang, Y., Liu, H., and Wallace, G.: Flexible free-standing graphene paper with interconnected porous structure for energy storage. J. Mater. Chem. A 3, 4428 (2015).CrossRefGoogle Scholar
Ye, X., Zhu, Y., Tang, Z., Wan, Z., and Jia, C.: In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance. J. Power Sources 360(Suppl. C), 48 (2017).Google Scholar
Shao, Q., Tang, J., Lin, Y., Li, J., Qin, F., Yuan, J., and Qin, L-C.: Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes. J. Power Sources 278(Suppl. C), 751 (2015).Google Scholar
Zhai, T., Xie, S., Yu, M., Fang, P., Liang, C., Lu, X., and Tong, Y.: Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8(Suppl. C), 255 (2014).Google Scholar
Ma, Z., Shao, G., Fan, Y., Wang, G., Song, J., and Shen, D.: Construction of hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core–shell nanostructure with excellent cycling stability for high-power asymmetric supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 9050 (2016).Google Scholar
Wang, L., Yang, H., Liu, X., Zeng, R., Li, M., Huang, Y., and Hu, X.: Constructing hierarchical tectorum-like α-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem. 129, 1125 (2017).Google Scholar
Tang, X., Jia, R., Zhai, T., and Xia, H.: Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 27518 (2015).Google Scholar
Choi, C., Kim, S.H., Sim, H.J., Lee, J.A., Choi, A.Y., Kim, Y.T., Lepró, X., Spinks, G.M., Baughman, R.H., and Kim, S.J.: Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 5, 9387 (2015).CrossRefGoogle ScholarPubMed
Zhang, Y., Bai, W., Cheng, X., Ren, J., Weng, W., Chen, P., Fang, X., Zhang, Z., and Peng, H.: Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem., Int. Ed. 53, 14564 (2014).CrossRefGoogle ScholarPubMed
Gao, Y., Jin, H., Lin, Q., Li, X., Tavakoli, M.M., Leung, S-F., Tang, W.M., Zhou, L., Wa Chan, H.L., and Fan, Z.: Highly flexible and transferable supercapacitors with ordered three-dimensional MnO2/Au/MnO2 nanospike arrays. J. Mater. Chem. A 3, 10199 (2015).Google Scholar
Jia, R., Zhu, F., Sun, S., Zhai, T., and Xia, H.: Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@Fe2O3 anode and working potential enlarged MnO2 cathode. J. Power Sources 341(Suppl. C), 427 (2017).Google Scholar
Xu, J., Wang, Q., Wang, X., Xiang, Q., Liang, B., Chen, D., and Shen, G.: Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 7, 5453 (2013).Google Scholar
Chen, J., Xu, J., Zhou, S., Zhao, N., and Wong, C-P.: Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25(Suppl. C), 193 (2016).CrossRefGoogle Scholar
Zhong, Y., Shi, T., Liu, Z., Huang, Y., Cheng, S., Cheng, C., Li, X., Liao, G., and Tang, Z.: Scalable fabrication of flexible solid-state asymmetric supercapacitors with a wide operation voltage utilizing printable carbon film electrodes. Energy Technol. 5, 656 (2017).Google Scholar
Feng, J-X., Ye, S-H., Lu, X-F., Tong, Y-X., and Li, G-R.: Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: A novel and high-performance flexible electrochemical energy storage device. ACS Appl. Mater. Interfaces 7, 11444 (2015).Google Scholar
Yu, Z., Moore, J., Calderon, J., Zhai, L., and Thomas, J.: Coil-type asymmetric supercapacitor electrical cables. Small 11, 5289 (2015).Google Scholar