Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T15:56:51.203Z Has data issue: false hasContentIssue false

A multiscale model applied to ionic polymer stiffness prediction

Published online by Cambridge University Press:  31 January 2011

Fei Gao
Affiliation:
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; and National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236
Lisa M. Weiland*
Affiliation:
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
*
a)Address all correspondence to this author.e-mail [email protected]
Get access

Abstract

A multiscale modeling approach applied to the stiffness prediction of polymers with high cross-link density is discussed. The material of focus in this work is the ionic polymer Nafion®. The approach applies rotational isomeric state theory in combination with a Monte Carlo methodology to develop a simulation model for polymer chain conformation. From this a large number of end-to-end chain lengths between cross links are generated; the probability density function of these lengths is estimated with the most appropriate Johnson family method. This estimation is used in a Boltzmann statistical thermodynamics approach to the multiscale prediction of stiffness. This work addresses the importance of the simulated polymer chain length in the generation of stable predictions. The multiscale prediction is found to be physically reasonable; the approach has the potential of serving as a first-order prediction tool for properties that are experimentally difficult or impossible to measure.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ghoniem, N.M., Cho, K.: The emerging role of multiscale modeling in nano- and micro-mechanics of materials. J. Comput. Aided Mater. Des. 3, 164 2000Google Scholar
2McFadden, N.: AFRL document OSR-02-02,Google Scholar
3Fermeglia, M., Pricl, S., Longo, G.: Molecular modeling and process simulation: Real possibilities and challenges. Chem. Biochem. Eng. 17(1), 69 2003Google Scholar
4Kremer, K., Müller-Plathe, F.: Multiscale problems in polymer science: Simulation approaches. MRS Bull. 205 2001Google Scholar
5de Rubia, T.D. la, Bulatov, V.: Materials research by means of multiscale computer simulation. MRS Bull. 169 2001Google Scholar
6Phillips, R.: Modeling the stuff of the material world: Do we need all of the atoms? The Bridge National Academy of Engineering Winter 22, 2004Google Scholar
7Associated Press Update 1: Audi, VW, and Porsche to make hybrid engine. Forbes 12 2005Google Scholar
8Landler, M., Bradsher, K.: VW to build hybrid minivan with Chinese.New York Times Sept 9, 2005,Google Scholar
9Schneider, G.: Priming the public for hydrogen fuel. The Washington Post Nov 10, 2004,Google Scholar
10Hickner, M.A., Ghassemi, H., Kim, Y.S., Einsla, B.R., McGrath, J.E.: Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 104, 4587 2004CrossRefGoogle ScholarPubMed
11Farinholt, K., Newbury, K., Bennet, M., Leo, D.: An investigation into the relationship between charge and strain in ionic polymer sensors in First World Congress on Biomimetics and Artificial Muscles Albuquerque, NM, 9–11 Dec 2002,Google Scholar
12Nemat-Nasser, S.: Micromechanics of actuation of ionic polymer-metal composites (IPMCs). J. Appl. Phys. 92(5), 2899 2002Google Scholar
13Osada, Y., Hasebe, M.: Electrically activated mechanochemical devices using polyelectrolyte gels. Chem. Lett. (Jpn.) 1285 1985Google Scholar
14Sadeghipour, K., Salomon, R., Neogi, S.: Development of a novel electrochemically active membrane and “smart” material based vibration sensor/damper. Smart Mater. Struct . 1(2), 172 1992Google Scholar
15Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., Smith, J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—A review. Smart Mater. Struct. 7(6), R15 1998CrossRefGoogle Scholar
16Hsu, W.Y., Gierke, T.D.: Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15, 101 1982CrossRefGoogle Scholar
17Datye, V.K., Taylor, P.L., Hopfinger, A.J.: Simple model for clustering and ionic transport in ionomer membranes. Macromolecules 17, 1704 1984CrossRefGoogle Scholar
18Datye, V.K., Taylor, P.L.: Electrostatic contributions to the free energy of clustering of an ionomer. Macromolecules 18, 1479 1985CrossRefGoogle Scholar
19Lehmani, A., Durand-Vidal, S., Turq, P.: Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope. J. Appl. Poly. Sci. 68(3), 503 19983.0.CO;2-V>CrossRefGoogle Scholar
20Barbi, V., Funari, S.S., Gehrke, R., Scharnagl, N., Stribeck, N.: Nanostructure of Nafion membrane material as a function of mechanical load studied by SAXS. Polymer 44(17), 4853 2003CrossRefGoogle Scholar
21de Gennes, P.G., Okumura, K., Shahinpoor, M., Kim, K.J.: Mechanoelectric effects in ionic gels. Europhys. Lett. 50(4), 513 2000CrossRefGoogle Scholar
22Asaka, K., Oguro, K.: Bending of polyelectrolyte membrane platinum composites by electric stimuli. J. Electr. Chem. 480, 186 2000CrossRefGoogle Scholar
23Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential, and Challenges SPIE The International Society for Optical Engineering, Bellingham, WA 2001Google Scholar
24Li, J.Y., Nemat-Nasser, S.: Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane. Mech. Mater. 32, 303 2000CrossRefGoogle Scholar
25Nemat-Nasser, S., Li, J.Y.: Electromechanical response of ionic polymer–metal composites. J. Appl. Phys. 87(7), 3321 2000CrossRefGoogle Scholar
26Weiland, L.M., Leo, D.J.: Computational analysis of ionic polymer cluster energetics. J. Appl. Phys. 97, 013541 2005Google Scholar
27Flory, P.J.: Statistical Mechanics of Chain Molecules Hanser Publisher New York 1988Google Scholar
28Mattice, W.L., Suter, U.W.: Conformational Theory of Large Molecules. The Rotational Isomeric State Model in Macromolecular Systems Wiley New York 1994Google Scholar
29Rehahn, M., Mattice, W.L., Suter, U.W.: Rotational isomeric state models in macromolecular systems. Adv. Polym. Sci. 131/132, 1 1997CrossRefGoogle Scholar
30Mark, J.E., Curro, J.G.: A non-Gaussian theory of rubberlike elasticity based on rotational isomeric state simulations of network chain configurations. I. Polyethylene and polydimethylsiloxane short-chain unimodal networks. J. Chem. Phys. 79(11), 5705 1983Google Scholar
31Yuan, Q.W., Kloczkowski, A., Mark, J.E., Sharaf, M.A.: Simulations on the reinforcement of poly(dimethylsiloxane) elastomers by randomly distributed filler particles. J. Polym. Sci., Part B: Polym. Phys. 34, 1647 1996Google Scholar
32Sharaf, M.A., Mark, J.E.: Monte Carlo simulations on the effects of nanoparticles on chain deformations and reinforcement in amorphous polyethylene networks. Polymer 45, 3943 2004CrossRefGoogle Scholar
33Weiland, L.M., Lada, E.K., Smith, R.C., Leo, D.J.: Application of rotational isomeric state theory to ionic polymer stiffness predictions. J. Mater. Res. 20(9), 1 2005Google Scholar
34Matthews, J.L., Lada, E.K., Weiland, L.M., Smith, R.C., Leo, D.J.: Monte Carlo simulation of a solvated ionic polymer with cluster morphology. Smart Mater. Struct. 15(1), 187 2006CrossRefGoogle Scholar
35Jang, S.S., Molinero, V., Çağin, T., Goddard, W.A. III: Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: Effect of monomeric sequence. J. Phys. Chem. B 108, 3148 2004Google Scholar
36Mauritz, K.A., Moore, R.B.: State of understanding of Nafion. Chem. Rev. 104(10), 4535 2004CrossRefGoogle ScholarPubMed
37Bates, T.W., Stockmayer, W.H.: Conformational energies of perfluoroalkanes, part II. Dipole moments of H(CF2)nH. Macromolecules 1(1), 12 1968Google Scholar
38Gruger, A., Régis, A., Schmatko, T., Colomban, P.: Nanostructure of Nafion membranes at different states of hydration: An IR and Raman study. Vib. Spectrosc. 26(2), 215 2001Google Scholar
39Paddison, S.J.: Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Ann. Rev. Mater. Res. 33, 289 2003Google Scholar
40Treloar, L.R.G.The Physics of Rubber Elasticity, 3rd ed.Clarendon Press Oxford, UK 1975Google Scholar
41Swain, J.J., Venkatraman, S., Wilson, J.R.: Least-squares estimation of distribution functions in Johnson’s translation system. J. Statist. Comput. Simul. 29, 271 1988Google Scholar
42Kawano, Y., Wang, Y., Palmer, R.A., Aubuchon, S.R.: Stress–strain curves of Nafion membranes in acid and salt forms. Polimeros 12(2), 96 2002Google Scholar
43Krüger, J.K., Fischer, C.: The mono-crystalline state of polyvinylidene fluoride/trifluoroethylene on nano-structured Teflon. A. le Coutre. Appl. Phys. A 70, 297 2000Google Scholar
44Han, T-H., Kim, D-O., Lee, Y., Suh, S-J., Jung, H-C., Oh, Y-S., Nam, J-D.: Gold nanostructures formed in ionic clusters of perfluorinated ionomer. Macromol. Rapid Commun. 27(17), 1483 2006Google Scholar