Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T10:42:55.437Z Has data issue: false hasContentIssue false

Morphology of Si nanocrystallites embedded in SiO2 matrix

Published online by Cambridge University Press:  31 January 2011

V.S. Teodorescu
Affiliation:
National Institute of Materials Physics, Bucharest-Magurele R-077125, Romania
M.L. Ciurea*
Affiliation:
National Institute of Materials Physics, Bucharest-Magurele R-077125, Romania
V. Iancu
Affiliation:
Department of Physics, University “Politehnica” of Bucharest, Bucharest R-060042, Romania
M-G. Blanchin
Affiliation:
Université Claude Bernard Lyon 1, Laboratoire de Physique de la Matière Condensée et Nanostructures (PMCN), Centre National de la Recherche Scientifique (CNRS) UMR 5586, 69622 Villeurbanne Cedex, F-69000 France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The nanostructure of Six(SiO2)1–x films deposited on quartz substrate, where x varies from 0 to 1, was determined by high-resolution transmission electron microscopy in the sample regions with x ≈ 0.1, 0.2, 0.5, and 0.75. In the Si0.5(SiO2)0.5 region, the formation of a Si nanocrystallite network was established. At high concentrations of Si nanocrystallites, nanotwins and stacking faults occurred in the crystallites. Large Si crystallites appeared at x ⩾ 0.5 in the quartz substrate under the interface, while the film presented nanopores over the interface. The mechanisms for the formation of the nanocrystallites were discussed and correlated with the film properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Huang, S., Oda, S.: Charge storage in nitrided nanocrystalline silicon dots. Appl. Phys. Lett. 87, 173107 2005CrossRefGoogle Scholar
2Walters, R.J., Bourianoff, G.I., Atwater, H.A.: Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4, 143 2005CrossRefGoogle ScholarPubMed
3Hayashi, S., Yamamoto, K.: Optical properties of Si-rich SiO2 films in relation with embedded Si mesoscopic particles. J. Lumin. 70, 352 1996CrossRefGoogle Scholar
4You, L., Heng, C.L., Ma, S.Y., Ma, Z.C., Zong, W.H., Wu, Z., Qin, G.G.: Precipitation and crystallization of nanometer Si clusters in annealed Si-rich SiO2 films. J. Cryst. Growth 212, 109 2000CrossRefGoogle Scholar
5Dovrat, M., Oppenheim, Y., Jedrzejewski, J., Balberg, I., Sa’ar, A.: Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy. Phys. Rev. B 69, 155311 2004CrossRefGoogle Scholar
6Takeoka, S., Fujii, M., Hayashi, S.: Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys. Rev. B 62, 16820 2000CrossRefGoogle Scholar
7Timofeev, F.N., Aydinli, A., Ellialtioglu, R., Türkoglu, K., Güre, M., Mikhailov, V.N., Lavrova, O.A.: Visible photoluminescence from SiOx films grown by low temperature plasma enhanced chemical vapor deposition. Solid State Commun. 95, 443 1995CrossRefGoogle Scholar
8Iacona, F., Bongiorno, C., Spinella, C., Boninelli, S., Priolo, F.: Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films. J. Appl. Phys. 95, 3723 2004CrossRefGoogle Scholar
9Murakami, K., Suzuki, T., Makimura, T., Tamura, M.: Si nanocrystallites in SiO2 with intense visible photoluminescence synthesized from SiOx films deposited by laser ablation. Appl. Phys. A 69, S13 1999Google Scholar
10Riabinina, D., Durand, C., Margot, J., Chaker, M., Botton, G.A., Rosei, F.: Nucleation and growth of Si nanocrystals in an amorphous SiO2 matrix. Phys. Rev. B 74, 075334 2006CrossRefGoogle Scholar
11Riabinina, D., Durand, C., Rosei, F., Chaker, M.: Luminescent silicon nanostructures synthesized by laser ablation. Phys. Status Solidi A 204, 1623 2007CrossRefGoogle Scholar
12Zhang, S., Zhang, W., Yuan, J.: The preparation of photoluminescent Si nanocrystal–SiOx films by reactive evaporation. Thin Solid Films 326, 92 1998CrossRefGoogle Scholar
13Zacharias, M., Heitmann, J., Scholz, R., Kahler, U., Schmidt, M., Bläsing, J.: Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661 2002CrossRefGoogle Scholar
14Fischer, T., Petrova-Koch, V., Shcheglov, K., Brandt, M.S., Koch, F.: Continuously tunable photoluminescence from Si+-implanted and thermally annealed SiO2 films. Thin Solid Films 276, 100 1996CrossRefGoogle Scholar
15Guha, S., Qadri, S.B., Musket, R.G., Wall, M.A., Shimizu-Iwayama, T.: Characterization of Si nanocrystals grown by annealing SiO2 films with uniform concentrations of implanted Si. J. Appl. Phys. 88, 3954 2000CrossRefGoogle Scholar
16Liu, Y., Chen, T.P., Fu, Y.Q., Tse, M.S., Hsieh, J.H., Ho, P.F., Liu, Y.C.: A study on Si nanocrystal formation in Si-implanted SiO2 films by x-ray photoelectron spectroscopy. J. Phys. D: Appl. Phys. 36, L97 2003CrossRefGoogle Scholar
17Iancu, V., Draghici, M., Jdira, L., Ciurea, M.L.: Conduction mechanisms in silicon-based nanocomposites. J. Optoelectron. Adv. Mater. 6, 53 2004Google Scholar
18Ciurea, M.L., Teodorescu, V.S., Iancu, V., Balberg, I.: Electronic transport in Si/SiO2 nanocomposite films. Chem. Phys. Lett. 423, 225 2006CrossRefGoogle Scholar
19Teodorescu, V.S., Ciurea, M.L., Iancu, V., Blanchin, M.G. Microstructure of Si/SiO2nanocomposite films in Proceedings of the 27th International Semiconductor Conference CAS ’04, Sinaia, Romania Proc. CAS ’04, IEEE CN 04TH8748, Mini Print Bucharest, Romania 2004 Vol. 1, 59Google Scholar
20Abeles, B., Sheng, P., Coutts, M.D., Arie, Y.: Structural and electrical properties of granular metal films. Adv. Phys. 24, 407 1975CrossRefGoogle Scholar
21Thuillier, B., Boyeaux, J.P., Kaminski, A., Laugier, A.: Transmission electron microscopy and EDS analysis of screen-printed contacts formation on multicrystalline silicon solar cells. Mater. Sci. Eng., B 102(1-3), 58 2003CrossRefGoogle Scholar
22Wakayama, Y., Inokuma, T., Hasegawa, S.: Nanoscale structural investigation of Si crystallites grown from silicon suboxide films by thermal annealing. J. Cryst. Growth 183, 124 1998CrossRefGoogle Scholar
23Hadjisavvas, G., Kelires, P.C.: Theory of interface structure, energetics, and electronic properties of embedded Si/a-SiO2 nanocrystals. Physica E (Amsterdam) 38, 99 2007CrossRefGoogle Scholar
24Malm, J-O., O’Keefe, M.A.: Deceptive “lattice spacings” in high-resolution micrographs of metal nanoparticles. Ultramicroscopy 68, 13 1997CrossRefGoogle Scholar
25Stavarache, I., Ciurea, M.L.: Percolation phenomena in Si–SiO2 nanocomposite films. J. Optoelectron. Adv. Mater. 9, 2644 2007Google Scholar
26Du, X.W., Li, H., Lu, Y.W., Sun, J.: Preferential growth of Si nanocrystals in SiO2/Si/SiO2 sandwich structure. J. Cryst. Growth 305, 59 2007CrossRefGoogle Scholar
27Kahler, U., Hofmeister, H.: Size evolution and photoluminescence of silicon nanocrystallites in evaporated SiOx thin films upon thermal processing. Appl. Phys. A 74, 13 2002CrossRefGoogle Scholar
28Khomenkova, L., Korsunska, N., Stara, T., Venger, Y., Sada, C., Trave, E., Goldstein, Y., Jedrzejewski, J., Savir, E.: Depth redistribution of components of SiOx layers prepared by magnetron sputtering in the process of their decomposition. Thin Solid Films 515, 6749 2007CrossRefGoogle Scholar
29Bauerle, D.: Laser Processing and Chemistry 2nd ed. edited by Springer Berlin 1995 576Google Scholar
30Mathiot, D., Schunck, J.P., Perego, M., Fanciulli, M., Normand, P., Tsamis, C., Tsoukalas, D.: Silicon self-diffusivity measurement in thermal SiO2 by 30Si/28Si isotopic exchange. J. Appl. Phys. 94, 2136 2003CrossRefGoogle Scholar
31Lamkin, M.A., Riley, F.L., Fordham, R.J.: Oxygen mobility in silicon dioxide and silicate glasses: A review. J. Eur. Ceram. Soc. 10, 347 1992CrossRefGoogle Scholar
32Uematsu, M., Gunji, M., Tsuchiya, M., Itoh, K.M.: Enhanced oxygen exchange near the oxide/silicon interface during silicon thermal oxidation. Thin Solid Films 515, 6596 2007CrossRefGoogle Scholar
33Baldan, A.: Review progress in Ostwald ripening theories and their applications to nickel-base superalloys. Part I: Ostwald ripening theories. J. Mater. Sci. 37, 2171 2002CrossRefGoogle Scholar