Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T08:39:07.191Z Has data issue: false hasContentIssue false

Morphology influence on photocatalytic activity of tungsten oxide loaded by platinum nanoparticles

Published online by Cambridge University Press:  31 January 2011

Mohsen Khajeh Aminian
Affiliation:
International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
Jinhua Ye*
Affiliation:
International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan; and Photocatalytic Materials Center, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Photocatalytic activity of different morphologies of tungsten oxide was investigated before and after platinum loading. Different shape particles of tungsten oxide were synthesized using peroxo tungstic acid solution as a basic precursor and different methods. The prepared materials were composed of nanoparticles, nanorods, and nanosheets that formed different morphologies. The results of photodegradation with isopropyl alcohol (IPA) under visible light showed that the samples composed of nanostructures with an average lateral thickness of 20 to 47 nm were more active than one composed of broad nanosheets with a thickness of 60 nm. The samples were loaded with a platinum cocatalyst. The results of photocatalytic evaluation of loaded samples showed that the photooxidation reaction of samples with a smaller feature was accelerated with a higher rate rather than one with broad nanosheets. We conclude that although loading of a cocatalyst promoted the photocatalytic activity, it is not capable of compensating for the morphology influence on the photocatalytic activity.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle ScholarPubMed
2.Kako, T., Zou, Z., Katagiri, M., Ye, J.Decomposition of organic compounds over NaBiO3 under visible light irradiation. Chem. Mater. 19, 198 (2007)CrossRefGoogle Scholar
3.Irokawa, Y., Morikawa, T., Aoki, K., Kosaka, S., Ohwaki, T., Taga, Y.Photodegradation of toluene over TiO2−xNx under visible light irradiation. Phys. Chem. Chem. Phys. 8, 1116 (2006)CrossRefGoogle ScholarPubMed
4.Wang, D., Kako, T., Ye, J.Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25) (Nb0.75Ti0.25)O3 under visible-light irradiation. J. Am. Chem. Soc. 130, 2724 (2008)CrossRefGoogle Scholar
5.Arai, T., Yanagida, M., Konishi, Y., Iwasaki, Y., Sugihara, H., Sayama, K.Promotion effect of CuO co-catalyst on WO3-catalyzed photodegradation of organic substances. Catal. Commun. 9, 1254 (2008)CrossRefGoogle Scholar
6.Panayotov, D., Kondratyuk, P., Yates, J.T.Photooxidation of a mustard gas simulant over TiO2–SiO2 mixed-oxide photocatalyst: Site poisoning by oxidation products and reactivation. Langmuir 20, 3674 (2004)CrossRefGoogle ScholarPubMed
7.Negishi, N., Takeuchi, K., Ibusuki, T.Surface structure of the TiO2 thin film photocatalyst. J. Mater. Sci. 33, 5789 (1998)CrossRefGoogle Scholar
8.Kako, T., Irie, H., Hashimoto, K.Prevention against catalytic poisoning by H2S utilizing TiO2 photocatalyst. J. Photochem. Photobiol., A 171, 131 (2005)CrossRefGoogle Scholar
9.Sunada, K., Watanabe, T., Hashimoto, K.Studies on photokilling of bacteria on TiO2 thin film. J. Photochem. Photobiol., A 156, 227 (2003)CrossRefGoogle Scholar
10.Tachikawa, T., Fujitsuka, M., Majima, T.Mechanistic insight into the TiO2 photocatalytic reactions: Design of new photocatalysts. J. Phys. Chem. C 111, 5259 (2007)CrossRefGoogle Scholar
11.Tachikawa, T., Tojo, S., Fujitsuka, M., Sekino, T., Majima, T.Photoinduced charge separation in titania nanotubes. J. Phys. Chem. B 110, 14055 (2006)CrossRefGoogle ScholarPubMed
12.Zhuang, H., Lin, C., Lai, Y., Sun, L., Li, J.Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ. Sci. Technol. 41, 4735 (2007)CrossRefGoogle ScholarPubMed
13.Chen, R., Bi, J., Wu, L., Li, Z., Fu, X.Orthorhombic Bi2GeO5 nanobelts: Synthesis, characterization, and photocatalytic properties. Cryst. Growth Des. 9, 1775 (2009)CrossRefGoogle Scholar
14.Farin, D., Kiwi, J., Avnir, D.Size effects in photoprocesses on dispersed catalysts. J. Phys. Chem. 93, 5851 (1989)CrossRefGoogle Scholar
15.Chen, D., Ye, J.Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Funct. Mater. 18, 1922 (2008)CrossRefGoogle Scholar
16.Zhao, Z., Miyauchi, M.Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew. Chem. Int. Ed. 47, 7051 (2008)CrossRefGoogle ScholarPubMed
17.Yurdakal, S., Loddo, V., Ferrer, B.B., Palmisano, G., Augugliaro, V., Farreras, J.G., Palmisano, L.Optical properties of TiO2 suspensions: Influence of pH and powder concentration on mean particle size. Ind. Eng. Chem. Res. 46, 7620 (2007)CrossRefGoogle Scholar
18.Ryu, J., Choi, W.Substrate-specific photocatalytic activities of TiO2 and multiactivity test for water treatment application. Environ. Sci. Technol. 42, 294 (2008)CrossRefGoogle ScholarPubMed
19.Zhang, Z., Wang, C.C., Zakaria, R., Ying, J.Y.Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102, 10871 (1998)CrossRefGoogle Scholar
20.Baiju, K.V., Shukla, S., Sandhya, K.S., James, J., Warrier, K.G.K.Photocatalytic activity of sol-gel-derived nanocrystalline titania. J. Phys. Chem. C 111, 7612 (2007)CrossRefGoogle Scholar
21.Lakshminarasimhan, N., Kim, W., Choi, W.Effect of the agglomerated state on the photocatalytic hydrogen production with in situ agglomeration of colloidal TiO2 nanoparticles. J. Phys. Chem. C 112, 20451 (2008)CrossRefGoogle Scholar
22.Abe, R., Takami, H., Murakami, N., Ohtani, B.Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc. 130, 7780 (2008)CrossRefGoogle ScholarPubMed
23.Irie, H., Miura, S., Kamiya, K., Hashimoto, K.Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem. Phys. Lett. 457, 202 (2008)CrossRefGoogle Scholar
24.Iwase, A., Kato, H., Okutomi, H., Kudo, A.Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions. Chem. Lett. 33, 1260 (2004)CrossRefGoogle Scholar
25.Kato, H., Asakura, K., Kudo, A.Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082 (2003)CrossRefGoogle ScholarPubMed