Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T01:35:49.389Z Has data issue: false hasContentIssue false

Morphological evolution of calcium apatites from nanorods to hollow spheres mediated by acetic acid

Published online by Cambridge University Press:  31 January 2011

Daidi Fan*
Affiliation:
Department of Chemical Engineering, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China; R&D Center of Biomaterial and Fermentation Engineering, Shaanxi 710069, People’s Republic of China; and Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Xi’an Shaanxi 710069, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hydroxyapatite (HAp) and brushite (DCPD) are two important compounds of the calcium apatite family with excellent bioactivity and osteoconductive properties in vivo. This work aimed to investigate the stability of HAp nanorods synthesized by the hydrothermal method in acetic acid aqueous solution. The results illuminated that HAp nanorods were converted into hollow nanospheres, and it was found that the concentration and amount of the acetic acid and the reaction time significantly affected the degree of the morphological evolution. Transmission electron microscope, high-resolution transmission electron microscope, and x-ray diffraction were performed for characterizing the samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wang, L.J. and Nancollas, G.H.: Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 108, 4628 (2008).CrossRefGoogle ScholarPubMed
2Dorozhkin, S.V.: Calcium orthophosphates. J. Mater. Sci. 42, 1061 (2007).CrossRefGoogle Scholar
3Dorozhkin, S.V.: Bioceramics based on calcium orthophosphates. Glass Ceram. 64, 442 (2007).CrossRefGoogle Scholar
4LeGeros, R.Z.: Calcium phosphates in oral biology and medicine. Monogr. Oral Sci. 15, 1 (1991).CrossRefGoogle ScholarPubMed
5Hesse, A. and Heimbach, D.: Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: A review. World J. Urol. 17, 308 (1999).CrossRefGoogle ScholarPubMed
6Danil'chenko, S.N., Kulik, A.N., Bugai, A.N., Pavlenko, P.A., Kalinichenko, T.G., Ul'yanchich, N.V., and Sukhodub, L.F.: Determination of the content and localization of magnesium in bioapa-tite of bone. J. Appl. Spectrosc. 72, 899 (2005).CrossRefGoogle Scholar
7Wopenka, B. and Pasteris, J.D.: A mineralogical perspective on the apatite in bone. Mater. Sci. Eng., C 25, 131 (2005).CrossRefGoogle Scholar
8Passey, B.H., Robinson, T.F., Ayliffe, L.K., Cerling, T.E., Sponheimer, M., Dearing, M.D., Roeder, B.L., and Ehleringer, J.R.: Carbon isotope fractionation between diet, breath CO2, and bio-apatite in different mammals. J. Archaeol. Sci. 32, 1459 (2005).CrossRefGoogle Scholar
9LeGeros, R.Z.: Formation and transformation of calcium phosphates: Relevance to vascular calcification. Z. Kardiol. 90 (Suppl 3), III/116 (2001).CrossRefGoogle ScholarPubMed
10Mojzsis, S.J., Harrison, T.M., Arrhenius, G., and McKeegan, K.D.: Origin of life from apatite dating? Nature 400, 127 (1999).CrossRefGoogle Scholar
11Currey, J.: Biomaterials: Sacrificial bonds heal bone. Nature 414, 699 (2001).CrossRefGoogle Scholar
12Aoki, H.: Medical Applications of Hydroxyapatite (Ishiyaku Euro America Inc., Tokyo and St. Louis, 1994), p. 10.Google Scholar
13Fathi, M.H., Hanifi, A., and Mortazavi, V.: Preparation and bioactiv-ity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol. 202, 536 (2008).CrossRefGoogle Scholar
14Brady, B.H.G., Mapper, D.H., and Smythe, B.M.: Dissolution kinetics of hydroxyapatite. Nature 212, 77 (1966).CrossRefGoogle ScholarPubMed
15Kay, M.I., Young, R.A., and Posner, A.S.: Crystal structure of hydroxyapatite. Nature 204, 1050 (1964).CrossRefGoogle ScholarPubMed
16Larsen, S.: Solubility of hydroxyapatite. Nature 212, 605 (1966).CrossRefGoogle Scholar
17Wang, X., Zhuang, J., Peng, Q., and Li, Y.D.: Liquid–solid–solution synthesis of biomedical hydroxyapatite nanorods. Adv. Mater. 18, 2031 (2006).CrossRefGoogle Scholar
18Wang, X., Zhuang, J., Peng, Q., and Li, Y.D.: A general strategy for nanocrystal synthesis. Nature 437, 121 (2005).CrossRefGoogle ScholarPubMed
19Wang, X., Peng, Q., and Li, Y.D.: Interface-mediated synthesis of monodisperse nanostructures. Acc. Chem. Res. 40, 635 (2007).CrossRefGoogle ScholarPubMed
20Johnsson, M.S.A. and Nancollas, G.H.: The role of brushite and octacalcium phosphate in apatite formation. Crit. Rev. Oral Biol. Med. 3, 61 (1992).CrossRefGoogle ScholarPubMed
21Hofmann, M.P., Mohammed, A.R., Perrie, Y., Gburec, U., and Barralet, J.E.: High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta Biomater. 5, 43 (2009).Google ScholarPubMed
22Tamimi, F., Kumarasami, B., Doillon, C., Gbureck, U., Nihouannen, D.L., Cabarcos, E.L., and Barralet, J.E.: Brushite-collagen composites for bone regeneration. Acta Biomater. 4, 1315 (2008).CrossRefGoogle ScholarPubMed
23Young, A.M., Ng, P.Y.J., Gbureck, U., Nazhat, S.N., Barralet, J.E., and Hofmann, M.P.: Characterization of chlorhexidine-releasing, fast-setting, brushite bone cements. Acta Biomater. 4, 1081 (2008).CrossRefGoogle ScholarPubMed