Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T13:24:20.727Z Has data issue: false hasContentIssue false

Monodisperse magnetic nanoparticles: Preparation and dispersion in water and oils

Published online by Cambridge University Press:  31 January 2011

S. Lefebure
Affiliation:
Laboratoire Liquides Ioniques et Interfaces Chargées, Equipe “Colloïdes Magnétiques,”Université Pierre et Marie Curie, Paris, France
E. Dubois
Affiliation:
Laboratoire Liquides Ioniques et Interfaces Chargées, Equipe “Colloïdes Magnétiques,”Université Pierre et Marie Curie, Paris, France
V. Cabuil*
Affiliation:
Laboratoire Liquides Ioniques et Interfaces Chargées, Equipe “Colloïdes Magnétiques,”Université Pierre et Marie Curie, Paris, France
S. Neveu
Affiliation:
Laboratoire Liquides Ioniques et Interfaces Chargées, Equipe “Colloïdes Magnétiques,”Université Pierre et Marie Curie, Paris, France
R. Massart
Affiliation:
Laboratoire Liquides Ioniques et Interfaces Chargées, Equipe “Colloïdes Magnétiques,”Université Pierre et Marie Curie, Paris, France
*
a) Author to whom correspondence should be sent.
Get access

Abstract

Nanometric maghemite and cobalt ferrite particles are chemically synthesized. The process produces particles polydisperse in size. The positive charges of their surface allow one to disperse them in aqueous acidic solutions and to obtain dispersions stabilized through electrostatic repulsions. Increasing acid concentration (in the range 0.1 to 0.5 mol.L−1), interparticles repulsions are screened and phase transitions are induced. Using this phenomenon, we describe a two-step size sorting process, in order to get significant amounts of nanometric monosized particles (with diameters monitored between typically 6 and 13 nm). As the surface of the latter is not modified by the size sorting process, usual procedures are used to disperse them in several aqueous or oily media.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bate, G., Ferromagnetic Mater. 2, 381 (1980).Google Scholar
2.Haneda, K. and Morrish, A. H., Phys. Lett. A 64A, 259 (1977).CrossRefGoogle Scholar
3. For example, Sappey, R., Vincent, E., Ocio, M., Hammann, J., Chaput, F., Boilot, J. P., and Zins, D., Europhys. Lett. 37(9), 639 (1997).CrossRefGoogle Scholar
4.Cabuil, V. and Perzynski, R., in Magnetic Fluids and Applications Handbook, edited by Berkovski, B. (Begell House Inc. Pubs., 1996), p. 14.Google Scholar
5.Mann, S., Hannington, J. P., and Williams, R. J. O., Nature (London) 324, 565 (1986).Google Scholar
6.Yaacob, I. I., Nunes, A. C., Bose, A., and Shah, D. O., J. Colloid Interface Sci. 168, 289 (1994).CrossRefGoogle Scholar
7.Blums, E. and Yu, A.. Chukhov, J. Magn. Magn. Mater. 122, 110 (1993).CrossRefGoogle Scholar
8.Fort, J. Le, C. R. Acad. Sci. Paris 34, 480 (1852).Google Scholar
9.Massart, R., IEEE Trans. Magn. MAG. 17, 131 (1981).CrossRefGoogle Scholar
10.Bacri, J. C., Perzynski, R., Salin, D., Cabuil, V., and Massart, R., J. Magn. Magn. Mater. 85, 27 (1990).CrossRefGoogle Scholar
11.Massart, R. and Cabuil, V., J. Chim. Phys. 84, 967 (1987).CrossRefGoogle Scholar
12.Tourinho, F. A., Franck, R., and Massart, R., J. Mater. Sci. 25, 32493254 (1990).CrossRefGoogle Scholar
13.Jolivet, J. P. and Tronc, E.. J. Colloid Interface Sci. 125, 688 (1988).CrossRefGoogle Scholar
14.Pusey, P. N., in Liquides, Cristallisation et Transitions Vitreuses, Les Houches 1989, Session LI, Part II, p. 765.Google Scholar
15.Bibette, J., Roux, D., and Nallet, F., Phys. Rev. Lett. 65, 2470 (1990).Google Scholar
16.Cabuil, V., Dubois, E., Neveu, S., Bacri, J. C., Hasmonay, E., and Perzynski, R., Prog. Colloid Polym. Sci. 98, 2329 (1995).CrossRefGoogle Scholar
17.Jansen, J. W., De Kruif, C. G., and Vrij, A., J. Colloid Interface Sci. 87, 267 (1986).Google Scholar
18.Cabuil, V., Massart, R., Bacri, J. C., Perzynski, R., and Salin, D., J. Chem. Research (S), 130 (1987).Google Scholar
19.Bacri, J. C., Perzynski, R., Salin, D., Cabuil, V., Massart, R., Pons, J. N., and Roger, J., in Biophysical Effects of Steady Magnetic Fields, edited by Morel, G., Kiepenheur, J., and Boccara, N. (Springer-Verlag, Berlin, 1986), p. 59.CrossRefGoogle Scholar
20.Massart, R., Dubois, E., Cabuil, V., and Hasmonay, E., J. Magn. Magn. Mater. 149, 15 (1995).CrossRefGoogle Scholar
21.Charlot, G., in Les Méthodes de la Chimie Analytique (Masson, Paris, 1966), p. 737.Google Scholar
22.Kaiser, R. and Miskolczy, G., J. Appl. Phys. 41, 1064 (1970).CrossRefGoogle Scholar
23.Foner, S. and Macniff, E. J. Jr., The Rev. Scient. Inst. 39, 171 (1968).CrossRefGoogle Scholar
24.Chantrell, R. W., Popplewell, J., and Charles, S. W., IEEE Trans. Magn. MAG. 14, 975 (1978).CrossRefGoogle Scholar
25.Bacri, J. C., Perzynski, R., Salin, D., Cabuil, V., and Massart, R., J. Magn. Magn. Mater. 62, 36 (1986).CrossRefGoogle Scholar
26.Bee, A., Bouchami, T., Cabuil, V., Carpentier, M., Fruchart, J. M., Massart, R., Neveu, S., Pons, J. N., and Roger, J., Patent Fr. 90 06484.Google Scholar