Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T10:00:14.296Z Has data issue: false hasContentIssue false

Molecular dynamics simulations of the interactions between TiO2 nanoparticles and water with Na+ and Cl, methanol, and formic acid using a reactive force field

Published online by Cambridge University Press:  29 November 2012

Sung-Yup Kim*
Affiliation:
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Adri C.T. van Duin
Affiliation:
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
James D. Kubicki
Affiliation:
Department of Geosciences and the Earth & Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Simulations of TiO2(both rutile and anatase) nanoparticles with water, methanol, and formic acid were conducted using a ReaxFF reactive force field to investigate the characteristic behavior of reactivity to these organic solvents. The force field was validated by comparing water dissociative adsorption percentage and bond length between Na and O with density functional theory (DFT) and experimental results. In the simulations, 1-nm rutile and anatase nanoparticles with water, methanol, and formic acid were used, respectively. The numbers of attached hydroxyl with time and nanoparticles distortion levels are presented. We found that the rutile nanoparticle is more reactive than the anatase nanoparticle and that formic acid distorts nanoparticles more than water and methanol.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Labat, F., Baranek, P., Domain, C., Minot, C., and Adamo, C.: Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals. J. Chem. Phys. 126(15), 12 (2007).CrossRefGoogle ScholarPubMed
Tanner, R.E., Liang, Y., and Altman, E.I.: Structure and chemical reactivity of adsorbed carboxylic acids on anatase TiO2(001). Surf. Sci. 506(3), 251271 (2002).Google Scholar
Sasahara, A., Uetsuka, H., and Onishi, H.: NC-AFM topography of HCOO and CH3COO molecules co-adsorbed on TiO2(110). Appl. Phys. A-Mater. Sci. Process. 72, S101S103 (2001).Google Scholar
Sayago, D.I., Polcik, M., Lindsay, R., Toomes, R.L., Hoeft, J.T., Kittel, M., and Woodruff, D.P.: Structure determination of formic acid reaction products on TiO2(110). J. Phys. Chem. B 108(38), 1431614323 (2004).Google Scholar
Hayden, B.E., King, A., and Newton, M.A.: Fourier transform reflection-absorption IR spectroscopy study of formate adsorption on TiO2(110). J. Phys. Chem. B 103(1), 203208 (1999).Google Scholar
Fukui, K., Onishi, H., and Iwasawa, Y.: Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy. Chem. Phys. Lett. 280(3–4), 296301 (1997).Google Scholar
Popova, G.Y., Andrushkevich, T.V., Chesalov, Y.A., and Stoyanov, E.S.: In situ FTIR study of the adsorption of formaldehyde, formic acid, and methyl formiate at the surface of TiO2 (anatase). Kinet. Catal. 41(6), 805811 (2000).Google Scholar
Vittadini, A., Selloni, A., Rotzinger, F.P., and Gratzel, M.: Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys. Rev. Lett. 81(14), 29542957 (1998).Google Scholar
Kim, K.S. and Barteau, M.A.: Pathways for carboxylic-acid decomposition on TiO2. Langmuir 4(4), 945953 (1988).Google Scholar
Vittadini, A., Selloni, A., Rotzinger, F.P., and Gratzel, M.: Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J. Phys. Chem. B 104(6), 13001306 (2000).Google Scholar
Rotzinger, F.P., Kesselman-Truttmann, J.M., Hug, S.J., Shklover, V., and Gratzel, M.: Structure and vibrational spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2 rutile (110) surface. J. Phys. Chem. B 108(16), 50045017 (2004).CrossRefGoogle Scholar
Wang, C.Y., Groenzin, H., and Shultz, M.J.: Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy. J. Am. Chem. Soc. 127(27), 97369744 (2005).CrossRefGoogle ScholarPubMed
Panayotov, D.A., Burrows, S.P., and Morris, J.R.: Photooxidation mechanism of methanol on rutile TiO2 nanoparticles. J. Phys. Chem. C 116(11), 66236635 (2012).Google Scholar
Tilocca, A. and Selloni, A.: Methanol adsorption and reactivity on clean and hydroxylated anatase(101) surfaces. J. Phys. Chem. B 108(50), 1931419319 (2004).Google Scholar
Liu, W.J., Wang, J.G., Guo, X.J., Fang, W., Wei, M.J., Lu, X.H., and Lu, L.H.: Dissociation of methanol on hydroxylated TiO(2)-B (1 0 0) surface: Insights from first principle DFT calculation. Catal. Today 165(1), 3240 (2011).Google Scholar
Sun, C.H., Liu, L.M., Selloni, A., Lu, G.Q., and Smith, S.C.: Titania-water interactions: A review of theoretical studies. J. Mater. Chem. 20(46), 1031910334 (2010).Google Scholar
Diebold, U., Ruzycki, N., Herman, G.S., and Selloni, A.: One step towards bridging the materials gap: Surface studies of TiO2 anatase. Catal. Today 85(2–4), 93100 (2003).Google Scholar
Thiel, P.A. and Madey, T.E.: The interaction of water with solid-surfaces - fundamental aspects. Surf. Sci. Rep. 7(6–8), 211385 (1987).CrossRefGoogle Scholar
Vittadini, A., Casarin, M., and Selloni, A.: Chemistry of and on TiO2-anatase surfaces by DFT calculations: A partial review. Theor. Chem. Acc. 117(5–6), 663671 (2007).CrossRefGoogle Scholar
Kurtz, R.L., Stockbauer, R., Madey, T.E., Roman, E., and Desegovia, J.L.: Synchrotron radiation studies of H2O adsorption on TiO2(110). Surf. Sci. 218(1), 178200 (1989).CrossRefGoogle Scholar
Hugenschmidt, M.B., Gamble, L., and Campbell, C.T.: The interaction of H2O with a TiO2(110) surface. Surf. Sci. 302(3), 329340 (1994).Google Scholar
Henderson, M.A.: An HREELS and TPD study of water on TiO2(110): The extent of molecular versus dissociative adsorption. Surf. Sci. 355(1–3), 151166 (1996).Google Scholar
Henderson, M.A.: Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12(21), 50935098 (1996).Google Scholar
Brinkley, D., Dietrich, M., Engel, T., Farrall, P., Gantner, G., Schafer, A., and Szuchmacher, A.: A modulated molecular beam study of the extent of H2O dissociation on TiO2(110). Surf. Sci. 395(2–3), 292306 (1998).Google Scholar
Brookes, I.M., Muryn, C.A., and Thornton, G.: Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 87(26), 4 (2001).Google Scholar
Krischok, S., Hofft, O., Gunster, J., Stultz, J., Goodman, D.W., and Kempter, V.: H2O interaction with bare and Li-precovered TiO2: Studies with electron spectroscopies (MIES and UPS(HeI and II)). Surf. Sci. 495(1–2), 818 (2001).Google Scholar
Liu, L.M., Zhang, C.J., Thornton, G., and Michaelides, A.: Structure and dynamics of liquid water on rutile TiO2(110). Phys. Rev. B 82(16), 4 (2010).Google Scholar
Wesolowski, D.J., Sofo, J.O., Bandura, A.V., Zhang, Z., Mamontov, E., Predota, M., Kumar, N., Kubicki, J.D., Kent, P.R.C., Vlcek, L., Machesky, M.L., Fenter, P.A., Cummings, P.T., Anovitz, L.M., Skelton, A.A., and Rosenqvist, J.: Comment on “Structure and dynamics of liquid water on rutile TiO2(110)”. Phys. Rev. B 85(16), 5 (2012).Google Scholar
Tilocca, A. and Selloni, A.: Vertical and lateral order in adsorbed water layers on anatase TiO2(101). Langmuir 20(19), 83798384 (2004).Google Scholar
Selloni, A., Vittadini, A., and Gratzel, M.: The adsorption of small molecules on the TiO2 anatase(101) surface by first-principles molecular dynamics. Surf. Sci. 402(1–3), 219222 (1998).Google Scholar
Herman, G.S., Dohnalek, Z., Ruzycki, N., and Diebold, U.: Experimental investigation of the interaction of water and methanol with anatase-TiO2(101). J. Phys. Chem. B 107(12), 27882795 (2003).Google Scholar
Lazzeri, M., Vittadini, A., and Selloni, A.: Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 63(15), 9 (2001).Google Scholar
Bredow, T. and Jug, K.: Theoretical investigation of water-adsorption at rutile and anatase surfaces. Surf. Sci. 327(3), 398408 (1995).Google Scholar
Fahmi, A. and Minot, C.: A theoretical investigation of water-adsorption on titanium-dioxide surfaces. Surf. Sci. 304(3), 343359 (1994).Google Scholar
Kim, S.Y., Kumar, N., Persson, P., Sofo, J., van Duin, A.C.T., and Kubicki, J.D.: Development of a ReaxFF reactive force field for titanium dioxide/water systems. J. Comput. Chem. (2012, submitted).Google Scholar
Mortier, W.J., Ghosh, S.K., and Shankar, S.: Electronegativity equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108(15), 43154320 (1986).CrossRefGoogle Scholar
van Duin, A.C.T. and Larter, S.R.: Molecular dynamics investigation into the adsorption of organic compounds on kaolinite surfaces. Org. Geochem. 32(1), 143150 (2001).CrossRefGoogle Scholar
Chenoweth, K., van Duin, A.C.T., and Goddard, W.A.: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112(5), 10401053 (2008).Google Scholar
Rahaman, O., van Duin, A.C.T., Goddard, W.A., and Doren, D.J.: Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. J. Phys. Chem. B 115(2), 249261 (2011).Google Scholar
Monti, S., van Duin, A.C.T., Kim, S-Y., and Barone, V.: Exploration of the conformational and reactive dynamics of glycine during and after its adsorption onto titania: Computational investigations in the gas phase and in solution. J. Phys. Chem. C 116, 51415150 (2012).Google Scholar
Rahaman, O., van Duin, A.C.T., Bryantsev, V.S., Mueller, J.E., Solares, S.D., Goddard, W.A., and Doren, D.J.: Development of a ReaxFF reactive force field for aqueous chloride and copper chloride. J. Phys. Chem. A 114, 35563568 (2010).Google Scholar
Manzano, H., Ulm, F-J., van Duin, A., Pellenq, R., Marinelli, F., and Moeni, S.: Water polarization and dissociation in confined nanopores: Mechanism, dipole distribution, and impact on the substrate properties. J. Am. Chem. Soc. 134, 22082215 (2012).Google Scholar
Manzano, H., Pellenq, R., Ulm, F-J., Buehler, M.J., and van Duin, A.C.T.: Hydration of calcium oxide predicted by reactive force field molecular dynamics. Langmuir 28, 41874197 (2012).Google Scholar
Kumar, N., Neogi, S., Kent, P.R.C., Bandura, A.V., Kubicki, J.D., Wesolowski, D.J., Cole, D., and Sofo, J.O.: Hydrogen bonds and vibrations of water on (110) rutile. J. Phys. Chem. C 113(31), 1373213740 (2009).CrossRefGoogle Scholar
Marcus, Y.: Ionic-radii in aqueous-solutions. Chem. Rev. 88(8), 14751498 (1988).CrossRefGoogle Scholar
Hummer, D.R., Kubicki, J.D., Kent, P.R.C., Post, J.E., and Heaney, P.J.: Origin of nanoscale phase stability reversals in titanium oxide polymorphs. J. Phys. Chem. C 113(11), 42404245 (2009).Google Scholar
Supplementary material: File

Kim et al. supplementary material

Supplementary data

Download Kim et al. supplementary material(File)
File 7.1 KB