Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T06:42:28.193Z Has data issue: false hasContentIssue false

Modified embedded-atom method interatomic potential for the Fe–Pt alloy system

Published online by Cambridge University Press:  01 January 2006

Jaesong Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
Yangmo Koo
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
Byeong-Joo Lee*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A semi-empirical interatomic potential formalism, the modified embedded atom method (MEAM), has been applied to obtain an interatomic potential for the Fe–Pt alloy system, based on the previously developed potentials for pure Fe and Pt. The potential can describe basic physical properties of the alloys (lattice parameter, bulk modulus, stability of individual phases, and order/disorder transformations), in good agreement with experimental information. The procedure for the determination of potential parameter values and comparisons between the present calculation and experimental data or high level calculation are presented. The applicability of the potential to atomistic studies to investigate structural evolution of Fe50Pt50 alloy thin films during post-annealing is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ouchi, K.: Recent advancement in perpendicular magnetic recording. IEEE Trans. Mag. 37, 1217 (2001).CrossRefGoogle Scholar
2.Weller, D., Moser, A., Folks, L., Best, M.E., Lee, W., Toney, M.F., Schwickert, M., Thiele, J-U. and Doerner, M.F.: High Ku materials approach to 100Gbit/in2. IEEE Trans. Mag. 36, 10 (2000).CrossRefGoogle Scholar
3.Coffey, K.R., Parker, M.A. and Howard, J.K.: High anisotropy L10 thin film for longitudinal recording. IEEE Trans. Mag. 31, 2737 (1995).CrossRefGoogle Scholar
4.Suzuki, T., Honda, N. and Ouchi, K.: Fe–Pt media for perpendicular magnetic recording. IEEE Trans. Mag. 35, 2748 (1999).CrossRefGoogle Scholar
5.Jeong, S-K., McHenry, M.E. and Laughlim, D.E.: Growth and characterization of L10 FePt and CoPt 〈001〉 textured polycrystalline thin films. IEEE Trans. Mag. 37, 1309 (2001).CrossRefGoogle Scholar
6.Huang, Y.H., Okumura, H. and Hadjipanayis, G.C.: CoPt and FePt nanowires by electrodeposition. J. Appl. Phys. 91, 6869 (2002).CrossRefGoogle Scholar
7.Christodoulides, J.A., Zhang, Y., Hadjipanayis, G.C. and Fountzoulas, C.: CoPt and FePt nanoparticles for high-density recording media. IEEE Trans. Mag. 36, 2333 (2000).CrossRefGoogle Scholar
8.Sato, K., Bian, B. and Hirotsu, Y.: Fabrication of oriented L10-FePt and FePd nanoparticles with large coercivity. J. Appl. Phys. 91, 8516 (2002).CrossRefGoogle Scholar
9.Zeng, H., Yan, M.L., Powers, N. and Sellmyer, D.J.: Orientation-controlled nonepitaxial L10 CoPt and FePt films. Appl. Phys. Lett. 80, 2350 (2002).CrossRefGoogle Scholar
10.Lauglin, D.E., Kumar, S., Peng, Y. and Roy, A.G.: Engineering the microstructure of thin films for perpendicular recording. IEEE Trans. Mag. 41, 719 (2005).CrossRefGoogle Scholar
11.Nishimura, K., Takahashi, K., Uchida, H. and Inoue, M.: Effects of third elements (Ag, B, Cu, Ir) addition and high Ar gas pressure on L10 FePt films. J. Magn. Magn. Mat. 272, 2189 (2004).CrossRefGoogle Scholar
12.Bian, B., Laughlin, D.E., Sato, K. and Hirotsu, Y.: Synthesis and structure of isolated L10 FePt particles. IEEE Trans. Mag. 36, 3021 (2000).CrossRefGoogle Scholar
13.Podgórny, M.: Electronic structure of the ordered phases of Pt–Fe alloys. Phys. Rev. B 43, 11300 (1991).CrossRefGoogle ScholarPubMed
14.Hayn, R. and Drchal, V.: Invar behavior of disordered fcc-FexPt1−x alloys. Phys. Rev. B 58, 4341 (1998).CrossRefGoogle Scholar
15.Chen, Y., Iwata, S. and Mohri, T.: First principles calculation of L10-disorder phase diagram in Fe–Pt system within the first and second nearest neighbor pair interaction energies. CALPHAD 26, 583 (2003).CrossRefGoogle Scholar
16.Ravindran, P., Kjekshus, A., Fjellvag, H., James, P., Nordström, L., Johansson, B. and Eriksson, O.: Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles full-potential calculations. Phys. Rev. B 63, 144409 (2001).CrossRefGoogle Scholar
17.Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).CrossRefGoogle ScholarPubMed
18.Daw, M.S. and Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
19.Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
20.Lee, B-J. and Baskes, M.I.: Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62, 8564 (2000).CrossRefGoogle Scholar
21.Lee, B-J., Baskes, M.I., Kim, H. and Cho, Y.K.: Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64, 184102 (2001).CrossRefGoogle Scholar
22.Rose, J.H., Smith, J.R., Guinea, F. and Ferrante, J.: Universal features of the equations of state of metals. Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
23.Baskes, M.I.: Determination of modified embedded atom method parameters for nickel. Mater. Chem. Phys. 50, 152 (1997).CrossRefGoogle Scholar
24.Lee, B-J., Shim, J-H. and Baskes, M.I.: Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys. Rev. B 68, 144112 (2003).CrossRefGoogle Scholar
25.Okamoto, H.: Phase Diagrams of Binary Iron Alloys; Monograph Series on Alloy Phase Diagram, Vol. 9, 1st ed. (ASM International, USA, 1993), pp. 330336.Google Scholar
26.Fredriksson, P. and Seetharaman, S.: Thermodynamic studies of some Fe–Pt alloys by the solid electrolyte galvanic cell method. Scand. J. Metall. 30, 258 (2001).CrossRefGoogle Scholar
27.Fredriksson, P. and Sundman, B.: A thermodynamic assessment of the Fe–Pt system. CALPHAD 25, 535 (2001).CrossRefGoogle Scholar
28.Ansara, I., Sundman, B. and Willemin, P.: Thermodynamic modeling of ordered phases in the Ni–Al system. Acta Metall. 36, 977 (1988).CrossRefGoogle Scholar
29.Sundman, B., Fries, S.G. and Oates, W.A.: A thermodynamic assessment of the Au-Cu system. CALPHAD 22, 335 (1998).CrossRefGoogle Scholar
30.Lee, B-J., Shim, J-H. and Park, H.M.: A semi-empirical atomic potential for the Fe-Cr binary system. CALPHAD 25, 527 (2001).CrossRefGoogle Scholar
31.Shim, J-H., Park, S.I., Cho, Y.W. and Lee, B-J.: Modified embeddedatom method calculation for the Ni–W system. J. Mater. Res. 18, 1863 (2003).CrossRefGoogle Scholar
32.Lee, B-J. and Shim, J-H.: A modified embedded atom method interatomic potential for the Cu–Ni system. CALPHAD 28, 125 (2004).CrossRefGoogle Scholar
33.Lee, B-J., Wirth, B.D., Shim, J-H., Kwon, J., Kwon, S.C. and Hong, J-H.: An MEAM interatomic potential for the Fe–Cu alloy system and cascade simulation on pure Fe and Fe–Cu alloy. Phys. Rev. B 71, 184205 (2005).CrossRefGoogle Scholar
34.Sumiyama, K., Shiga, M., Morioka, M. and Nakamura, Y.: Characteristic magnetovolume effects in Invar type Fe–Pt alloys. J. Phys. F: Metal Phys. 9, 1665 (1979).CrossRefGoogle Scholar
35.Kim, J-S. unpublished work (Pohang University of Science and Technology, Korea, 2005).Google Scholar