Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T02:54:34.808Z Has data issue: false hasContentIssue false

Modification of high temperature and high performance polymers by ion implantation

Published online by Cambridge University Press:  31 January 2011

Yongqiang Wang
Affiliation:
Center for Scientific Research, Southwest Missouri State University, Springfield, Missouri 65804
S.S. Mohite
Affiliation:
Center for Scientific Research, Southwest Missouri State University, Springfield, Missouri 65804
L.B. Bridwell
Affiliation:
Center for Scientific Research, Southwest Missouri State University, Springfield, Missouri 65804
R.E. Giedd
Affiliation:
Department of Physics and Astronomy, Southwest Missouri State University, Springfield, Missouri 65804
C.J. Sofield
Affiliation:
AEA Technology Harwell Laboratory, Didcot, Oxfordshire, United Kingdom
Get access

Abstract

Several polymers with high temperature and high performance properties have been modified by ion implantation. Ions of As and Xe with energies of 50 keV and 180 keV have been implanted in the dose range of 1015 to 1017 ions/cm2. Electrical conductivities of these originally insulating polymers have been greatly enhanced after the ion implantation. Structural and compositional changes that accompanied these electrical enhancements were observed using infrared (IR) and Raman spectroscopies, scanning electron microscopy (SEM), Rutherford backscattering spectroscopy (RBS), and elastic recoil detection analysis (ERDA) methods. Our high resolution data reveal a two-component conductivity that depends on both one-dimensional variable range hopping (VRH) and three-dimensional VRH. For lightly damaged samples (e.g., 1015 ions/cm2) the 1-D VRH is dominant while for highly damaged samples (e.g., 1017 ions/cm2) the 3-D VRH dominates.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Allen, W. N.Brant, P.Carosella, C. A.DeCorpe, J. J.Ewing, C. T.Saafeld, F.A. and Weber, D.C.J. Synth. Met. 1, 151 (1980).Google Scholar
2Forrest, S. R.Kaplan, M.L.Schmidt, P. H.Venkatesan, T. and Lovinger, A.J.Appl. Phys. Lett. 41, 708 (1982).Google Scholar
3Abel, J.S.Mazurek, H.Day, D.R.Maby, E.W.Senturia, S.D.Dresselhaus, G. and Dresselhaus, M. S. in Metastable Materials Formation by Ion Implantation, edited by Picraux, S.T. and Choyke, W. J. (Mater. Res. Soc. Symp. Proc. 7, Elsevier Science Publishing, New York, 1982), p. 173.Google Scholar
4Venkatesan, T.Brown, W. L.Murray, C.A.Marcantonio, K. L. and Wilkens, B.J.Poly. Eng. Sci. 23, 931 (1983).Google Scholar
5Mazurek, H.Day, D.R.Maby, E.W.Abel, J.S.Senturia, S.D.Dresselhaus, M.S. and Dresselhaus, G.J. Polym. Phys. 21, 537 (1983).Google Scholar
6Koshida, N. and Wachi, Y.Appl. Phys. Lett. 45, 436 (1984).Google Scholar
7Kaplan, M.L.Forrest, S.R.Schmidt, P.H. and Venkatesan, T.J. Appl. Phys. 55, 732 (1984).Google Scholar
8Venkatesan, T.Forrest, S. R.Kaplan, M. L.Schmidt, P. H.Murray, C. A., Brown, W.L.Wilkens, B.J.Roberts, R.F.Ruoo, L. Jr. , and Schonhorn, H.J. Appl. Phys. 56, 2778 (1984).Google Scholar
9Venkatesan, T.Dynes, R.C.Wilkens, B.White, A.E.Gibson, J.M., and Hamm, R. in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K.Holland, O. W.Clayton, C. R. and White, C.W. (Mater. Res. Soc. Symp. Proc. 27, Elsevier Science Publishing, New York, 1983), p. 449.Google Scholar
10Wasserman, B.Braunstein, G.Dresselhaus, M. S. and Wnek, G. E. in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G.K.Holland, O.W.Clayton, C.R. and White, C.W. (Mater. Res. Soc. Symp. Proc. 27, Elsevier Science Publishing, 1983), p. 423.Google Scholar
11Wnek, G.E.Wasserman, B.Dresselhaus, S. M.Tuunney, S.E. and Stille, J.K.J. Poly. Sci. Poly. Phys. Lett. Ed. 23, 609 (1985).Google Scholar
12Calcagno, L. and Foti, G.Appl. Phys. Lett. 47, 363 (1985).CrossRefGoogle Scholar
13Elman, B.S.Thakur, M.K.Sandman, D.J. and Newkirk, M.A.J. Appl. Phys. 57, 4996 (1985).CrossRefGoogle Scholar
14Venkatesan, T.Levi, R.Banwell, T. C.Tombrello, T.Nicolet, M.Hamm, R. and Meixner, A. E. in Ion Beam Processes in Advanced Electronic Materials and Device Technology, edited by Appleton, B. R., Eisen, F. H. and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 45, Pittsburgh, PA, 1985), p. 189.Google Scholar
15Elman, B. S.Sandman, D. J. and Newkirk, M. A.Appl. Phys. Lett. 46, 100 (1985).Google Scholar
16Venkatesan, T.Nucl. Instrum. Methods B7/8, 461 (1985).Google Scholar
17Wasserman, B.Phys. Rev. B 34, 1926 (1986).CrossRefGoogle Scholar
18Bartko, J.Hall, B. O. and Schoch, K. F. Jr. , J. Appl. Phys. 59, 111 (1986).CrossRefGoogle Scholar
19Sakamoto, M.Wasseiman, B.Dresselhaus, M. S. and Wnek, G. E.J. Appl. Phys. 60, 2788 (1986).Google Scholar
20Yoshida, K. and Iwaki, M.Nucl. Instrum. Methods B19/20, 878 (1987).Google Scholar
21Fink, D.Muller, M.Chadderton, L.T.Cannington, P.H.Elliman, R.G., and McDonald, D. C.Nucl. Instrum. Methods B 32, 125 (1988).Google Scholar
22Ruddy, F. H.Bartko, J. and Schoch, K. F. Jr. , J. Mater. Res. 3, 1253 (1988).CrossRefGoogle Scholar
23Duroux, J.L.Moilton, A. and Froyer, G.Macromol. Chem. Macromol. Symp. 24, 163 (1989).CrossRefGoogle Scholar
24Davenas, J.Boiteaux, G.Xu, X. L. and Adem, E.Nucl. Instrum. Methods B 32, 136 (1988).Google Scholar
25Aleshin, A.N.Gribanov, A.V.Dobrodumov, A.V.Su-vorov, A.V., and Shilmak, I. S.Sov. Phys. Solid State 31, 6 (1989).Google Scholar
26Davenas, J. and Xu, X. L.Makromol. Chem. Macromol. Symp. 22, 217 (1989).Google Scholar
27Fink, D.Ibel, K.Goppelt, P.Biersack, J.P.Wang, L. and Behar, M., Nucl. Instrum. Methods B 46, 342 (1990).Google Scholar
28Costantini, J. M.Flament, J. L.Mori, V.Sinopoli, L.Trochon, J.Uzureau, J. L.Zuppiroli, L.Forro, L.Ardonceau, J. and Lesueur, D., Rad. Eff. and Def. in Solids 115, 83 (1990).Google Scholar
29Bedell, C. J.Sofield, C. J.Bridwell, L. B. and Brown, I. M.J. Appl. Phys. 67, 1736 (1990).CrossRefGoogle Scholar
30Lee, E.H.Lewis, M.B.Blau, P.J. and Mansur, L.K.J. Mater. Res. 6, 610 (1991).Google Scholar
31Dresselhaus, M.S.Wasserman, B. and Wnek, G.E. in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K, Holland, O. W.Clayton, C. R. and White, C. W. (Mater. Res. Soc. Symp. Proc. 27, Elsevier Science Publishing, New York, 1983), p. 413.Google Scholar
32Brown, W.L.Rad. Eff. in Solid States 98, 115 (1986).Google Scholar
33Venkatesan, T.Calcagno, L.Elmann, B. S. and Foti, G. in Ion Beam Modifications of Insulators, edited by Mazzoldi, P. and Arnold, G.W. (Elsevier, North-Holland, 1987), Chap. 8, p. 301.Google Scholar
34Hersh, S.P.Brock, S. and Grady, P. L. in Polymers for Advanced Technology, edited by M. Lewin (VCH Publishers, New York, 1988), p. 52.Google Scholar
35Calcagno, L. and Foti, G.Nucl. Instrum. Methods B59/60, 1153 (1991).Google Scholar
36Zallen, R.The Physics of Amorphous Solids (J. Wiley & Sons, New York, 1983), p. 110.CrossRefGoogle Scholar
37Cohen, M. H. and Grest, G. S.Phys. Rev. B 20, 1077 (1979).Google Scholar
38Alexander, S.Laermans, C.Orbach, R. and Rosenberg, H. M.Phys. Rev. B 28, 4615 (1983).Google Scholar
39Puglisi, O.Licciardello, A.Calcagno, L. and Foti, G.J. Mater. Res. 3, 1247 (1988).Google Scholar
40Marietta, G.Nucl. Instrum. Methods B 46, 295 (1990).Google Scholar
41Davenas, J.Xu, X. L.Boiteaux, G. and Sage, D.Nucl. Instrum. Methods B 39, 754 (1989).Google Scholar
42Bessonov, M.I.Koton, M.M.Kudryavtsev, V.V. and Laius, L.A.: Polyimides-Thermally Stable Polymers (Plenum Press, New York, 1987).Google Scholar
43Encyclopedia ofPolymer Science and Engineering, edited by Mark, H. F., Bikales, N.M.Overberger, C.G.Menges, G. and Kroschwitz, J.I. (John Wiley and Sons, New York, 1988).Google Scholar
44Hergenrother, P. M. Proc. “High Temperature Polymers and Their Uses”, SPE Mtg., Cleveland, OH, October 1989, pp. 18.Google Scholar
45Mohite, S. S.Thompson, C.C. and Smith, D.W. Jr. , Polym. Mater. Sci. Eng. Prepr. 60, 290 (1989).Google Scholar
46Jahnke, T.S. and Mohite, S.S.Mag. Res. in Chem. 28, 1076 (1990).CrossRefGoogle Scholar
47Mohite, S. S.Whitfield, R. M.Thompson, C. C. and Rogers, J. W.Polym. Prepr. 31 (1), 307 (1990).Google Scholar
48Giedd, R. E.Shipman, J. and Murphy, M. in Ion Beam Processing of Advanced Electronic Materials, edited by Cheung, N. W.Marwick, A. D., and Roberto, J. B. (Mater. Res. Soc. Symp. Proc. 147, Pittsburgh, PA, 1989), p. 377.Google Scholar
49Bridwell, L. B.Giedd, R. E.Wang, Y. Q.Mohite, S. S.Jahnke, T.Brown, I. M.Bedell, C. J. and Sofield, C. J.Nucl. Instrum. Methods B56/57, 656 (1991).Google Scholar
50Wang, Y. Q.Bridwell, L. B.Giedd, R. E. and Murphy, M. J.Nucl. Instrum. Methods B56/57, 660 (1991).Google Scholar
51Bridwell, L. B.Giedd, R. E.Wang, Y. Q.Mohite, S. S.Jahnke, T. and Brown, I. M.Nucl. Instrum. Methods B59/60, 1240 (1991).Google Scholar
52Giedd, R. E.Moss, M. G.Craig, M. M. and Roberson, D. E.Nucl. Instrum. Methods B59/60, 1253 (1991).Google Scholar
53Wang, Y. Q.Giedd, R. E.Mohite, S. S.Jahnke, T.Bridwell, L. B. and Sofield, C.J.Mater. Lett. 12, 21 (1991).Google Scholar
54Bridwell, L. B. and Wang, Y. Q. invited paper at the International Conference on Thin Film Physics and Applications, April 15-17, 1991, Shanghai, China; published in SPIE 1519, 878 (1991).Google Scholar
55Ziegler, J. F.Biersack, J. P. and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, Oxford, 1985). 56.Google Scholar
56Kelly, B. T.J. Nucl. Mater. 172, 237 (1990).Google Scholar
57(a) Jones, A. M.Bedell, C. J.Dearnaley, G.Johnston, C. and Owens, J. M., Diamond and Related Materials 1, 416 (1992). (b) C. Johnston in Proc. Diamond Film 90, Crans-Montana, September, 1990, to be published in Coatings and Interface Technology, (c) Hsiao-chu Tsai and D. B. Bogy, J. Vac. Sci. Technol. A 5, 3287 (1987). (d) J. Robertson, Surf. Coat. Technol. 50, 185 (1992).Google Scholar
58Sofield, C.J.Sugden, S.Bedell, C.J.Graves, P.R. and Bridwell, L.B., Nucl. Instrum. Methods B 67, 432 (1992).Google Scholar
59Redfield, D.Phys. Rev. Lett. 30, 1319 (1973).Google Scholar
60Sheng, P.Abeles, B. and Arie, Y.Phys. Rev. Lett. 31, 44 (1973).Google Scholar
61Efros, A.L. and Shklovskii, B.I.J. Phys. C 8, 149 (1975).Google Scholar
62Wang, Yongqiang, Ph.D. Dissertation Lanzhou University and Southwest Missouri State University, 1991.Google Scholar
63Ziman, J.Principles of the Theory of Solids (Cambridge University Press, New York, 1964).Google Scholar
64(a) Mott, N.F.Philos. Mag. 19, 835 (1969). (b) N.F. Mott and E. A. Davis Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, U.K., 1979).Google Scholar
65Adkins, C. J.J. Phys. C 20, 235 (1987).Google Scholar
66(a) Ginder, J. M.Richter, A. F.MacDiarmid, A. G. and Epstein, A. J., Solid State Commun. 63 (2), 97 (1987). (b) K. Mi-zoguchi, M. Nethtschein J-P. Travers and C. Menardo Phys. Rev. Lett. 63, 66 (1989).CrossRefGoogle Scholar
67Blythe, A.R.Electrical Properties of Polymers, Cambridge Solid State Science Series (Cambridge, England, 1979). 68.Google Scholar
68Frenkel, J.Phys. Rev. 37, 1226 (1931).Google Scholar
69Cotts, D. B. and Reyes, Z. in Electrically Conductive Organic Polymers for Advanced Applications, Noyes Data Corporation (Park Ridge, NJ, 1986), Chaps. 7 and 8.Google Scholar
70Kirkpatrick, S.Rev. Mod. Phys. 45, 574 (1973).CrossRefGoogle Scholar
71Yuval, G.Phys. Lett. A 53, 136 (1975).CrossRefGoogle Scholar
72Thouless, D.J.Phys. Rev. Lett. 39, 1167 (1977).CrossRefGoogle Scholar
73Wang, Yongqiang, Bridwell, L. B. and Giedd, R. E.J. Appl. Phys. (Comm.) (January 1993, in press).Google Scholar