Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:34:28.983Z Has data issue: false hasContentIssue false

Modeling of a–Si:H deposition in a dc glow discharge reactor

Published online by Cambridge University Press:  31 January 2011

Dariusz Orlicki
Affiliation:
Laboratory for Ceramic and Reaction Engineering, Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 14260
Vladimir Hlavacek
Affiliation:
Laboratory for Ceramic and Reaction Engineering, Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 14260
Hendrik J. Viljoen*
Affiliation:
Department of Chemical Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska 68588–0126
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

PECVD reactors are increasingly used for the manufacturing of electronic components. This paper presents a reactor model for the deposition of amorphous hydrogenated silicon in a dc glow discharge of Ar–SiH4 The parallel-plate configuration is used in this study. Electron and positive ion densities have been calculated in a self-consistent way. A macroscopic description that is based on the Boltzmann equation with forwardscattering is used to calculate the ionization rate. The dissociation rate constant of SiH4 requires knowledge about the electron energy distribution function. Maxwell and Druyvesteyn distributions are compared and the numerical results show that the deposition rate is lower for the Druyvesteyn distribution. The plasma chemistry model includes silane, silyl, silylene, disilane, hydrogen, and atomic hydrogen. The sensitivity of the deposition rate toward the branching ratios SiH3 and SiH2 as well as H2 and H during silyl dissociation is examined. Further parameters that are considered in the sensitivity analysis include anode/cathode temperatures, pressure, applied voltage, gap distance, gap length, molar fraction of SiH4, and flow speed. This work offers insight into the effects of all design and control variables.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Inspektor-Koren, A., Surf, and Coat. Technol. 33, 31 (1987).CrossRefGoogle Scholar
2.Joannopoulos, J. D. and Lucovsky, G., The physics ofHydrogenated Amorphous Silicon I (Springer-Verlag, Berlin, 1984).Google Scholar
3.Nonaka, S., Jpn. J. Appl. Phys. 29, 571 (1990).CrossRefGoogle Scholar
4.Thomas, J. M., Properties of Amorphous Silicon (INSPEC, New York, 1985).Google Scholar
5.Kushner, M. J., J. Appl. Phys. 62, 2803 (1987).Google Scholar
6.Graves, D. and Jensen, K. F., IEEE Trans. Plasma Sci. PS-14, 78 (1986).CrossRefGoogle Scholar
7.Segur, P., Yousfi, M., Boeuf, J-P., Marode, E., Davies, A. J., and Evans, J. G., Microscopic Treatment of non-Equilibrium Regions, Proc. 11th Conf. on Plasma (1982).CrossRefGoogle Scholar
8.Friedland, L., J. Phys. D: Appl. Phys. 7, 2246 (1974).Google Scholar
9.Friedland, L. and Kagan, Yu. M., J. Phys. D: Appl. Phys. 19, 1019 (1986).CrossRefGoogle Scholar
10.Vicek, J., J. Phys. D: Appl Phys. 22, 623 (1988).Google Scholar
11.Ward, A. L., J. Appl. Phys. 33, 2789 (1962).Google Scholar
12.Lowke, J. J. and Davies, D. K., J. Appl. Phys. 48, 4991 (1977).CrossRefGoogle Scholar
13.Kushner, M. J., J. Appl. Phys. 63 (8), 2532 (1988).CrossRefGoogle Scholar
14.Boeuf, J-P., J. Appl. Phys. 63 (1988).Google Scholar
15.Traar, K. P., Mader, W., Heinreichsberger, O., and Selberherr, S., in Supercomputing 90 (IEEE Comp. Press).Google Scholar
16.Gresho, P. M., Lee, R. L., and Sani, R. L., in Recent Advances in Numerical Methods, Fluids, edited by Taylor, C. and Morgan, K. (Pineridge Press, Swansea), Vol. 1, pp. 2279.Google Scholar
17.Hughes, T. J. R. and Brooks, A. N., in Finite Element Methods for Convective Dominated Flows (AMD 34, ASME, New York, 1979).Google Scholar
18.Brooks, A. N. and Hughes, T. J. R., Comp. Meth. Mech., 32 (1982).Google Scholar
19.Martineau, P. M. and Davies, P. B., Chem. Brit. Oct., 1018 (1989).Google Scholar
20.Thomas, J. M., in Properties of Amorphous Silicon (INSPEC New York, 1985).Google Scholar
21.Itabashi, N., Nishiwaki, N., Magane, M., Naito, S., Goto, T., Matsuda, A., Yamada, C., and Hirota, E., Jpn. J. Appl. Phys. 29, L505 (1990).CrossRefGoogle Scholar
22.Perrin, J., Schmitt, J. P. M., DeRosny, G., Drevillon, B., Hue, J., and Lloret, A., Chem. Phys. 73, 383 (1982).CrossRefGoogle Scholar
23.Yamaguchi, Y., Sumiyama, A., Hattori, R., Morokuma, Y., and Makabe, T., J. Phys. D: Appl. Phys. 22, 505 (1989).Google Scholar
24.Ohmori, Y., Shimozuma, M., and Tagashira, H., J. Phys. D: Appl. Phys. 19, 1029 (1986).Google Scholar
25.Tichibana, K., Pure and Appl. Chem. 60, 769 (1988).CrossRefGoogle Scholar
26.McDaniel, E. W. and Mason, E. A., The Mobility and Diffusion of Ions in Gases (John Wiley and Sons, New York, 1973).Google Scholar
27.Park, S-K. and Economou, D. J., J. Appl. Phys. 68, 3904 (1990).Google Scholar
28.Kruithof, A. A. and Penning, F. M., Physica 4, 430 (1937).Google Scholar
29.Suzuki, M., Taniguchi, T., and Tagashira, H., J. Phys. D: Appl. Phys. 23, 842 (1990).CrossRefGoogle Scholar
30.Itoh, H., Kawaguchi, M., Takada, M., Nakao, Y., and Tagashira, H., J. Phys. D: Appl. Phys. 22, 1095 (1989).CrossRefGoogle Scholar
31.Carman, R. J., J. Phys. D: Appl. Phys. 22, 55 (1989).CrossRefGoogle Scholar