Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:09:07.487Z Has data issue: false hasContentIssue false

A model of thermomechanical fatigue in a lead-base alloy

Published online by Cambridge University Press:  31 January 2011

Larry Lawson
Affiliation:
Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

A model for the growth of a grain boundary crack in thermomechanical fatigue is derived for a single-phase or low alloy fcc metal at homologous temperatures near 0.5. Crack growth is hypothesized to proceed through vacancies binding in pairs at the crack tip to impurities or an oxide layer. This model is applied to 97Pb−3Sn, and the results compared with experiment. Good agreement is shown between the model and experiment, especially in predicting the effects of frequency and thermal-mechanical phasing. These effects do not appear to have been previously modeled successfully.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Coffin, L. Jr., Trans. ASME 79, 1637 (1957).Google Scholar
2Jaske, C., in Thermal Fatigue of Materials and Components, ASTM STP 612, edited by Spera, D. and Mowbray, D. (ASTM, Philadelphia, PA, 1976), pp. 214226.Google Scholar
3Marchand, N. and Pelloux, R., Proc. 11th Canadian Conference on Time-Dependent Fracture (Martinus Nijhoff, Dordrecht, Netherlands, 1984), pp. 141152.Google Scholar
4Carden, A. and Sodergren, J., The Failure of304 ss by Thermal Cycling at Elevated Temperature, ASME Paper 61-WA-200 (ASME, Philadelphia, PA, 1961).Google Scholar
5Sheffler, K., in Thermal Fatigue of Materials and Components, ASTM STP 612, edited by Spera, D. and Mowbray, D. (ASTM, Philadelphia, PA, 1969), pp. 163189.Google Scholar
6Lawson, L., Ph.D. Thesis, Northwestern University, Evanston, IL (1989).Google Scholar
7Argon, A. S., in Corrosion Fatigue: Chemistry, Mechanics and Microstructure (NACE, Houston, TX, 1972), pp. 176181.Google Scholar
8Stringer, J., Met. Rev. 11, 113 (1966).CrossRefGoogle Scholar
9Kaesche, H., Metallic Corrosion, trans. Rapp, R. (NACE, Houston, TX, 1985), p. 459.Google Scholar
10Weertman, J., Acta Metall. 26, 1731 (1978).CrossRefGoogle Scholar
11Lin, M., Fine, M.E., and Mura, T., Acta Metall. 34, 619 (1986).CrossRefGoogle Scholar
12Lawson, L., Fine, M. E., and Jeannotte, D., Metall. Trans. A 22A, 1059 (1991).CrossRefGoogle Scholar
13Lawn, B., J. Mater. Sci. 12, 1950 (1977).CrossRefGoogle Scholar
14Rice, J. R., J. Appl. Mech. 35, 379 (1968).CrossRefGoogle Scholar
15Kuwabara, K. and Nitta, A., Mechanical Behavior of Materials, ICM-3, edited by Miller, K. and Smith, R. (Pergamon, Oxford, England, 1979), Vol. 2, pp. 6978.Google Scholar
16Berriche, R., Fine, M. E., and Jeannotte, D., Metall. Trans. A 22A, 357 (1991).CrossRefGoogle Scholar
17Halford, G., Low Cycle Thermal Fatigue, NASA-TM-87225 (NASA, Washington, DC, 1986).Google Scholar
18Halford, G. and Saltsman, J., Calculation of Thermomechani-cal Fatigue Life Based on Isothermal Behavior, NASA-TP-2779 (NASA, Washington, DC, 1987).Google Scholar
19Tang, N-Y. and Plumtree, A., Z. Metallk. 76, 46 (1985).Google Scholar
20Balluffi, R., in Grain Boundary Structure and Kinetics (ASTM, Philadelphia, PA, 1979).Google Scholar
21Hull, D. and Rimmer, D., Philos. Mag. 4, 673 (1959).CrossRefGoogle Scholar
22Gough, H. and Sopwith, W., J. Inst. Met. 56, 55 (1935).Google Scholar
23Snowden, K., Acta Metall. 12, 295 (1964).CrossRefGoogle Scholar
24Takamura, I., Shirai, Y., Furukawa, K., and Nakamura, F., Mater. Sci. Forum 15-18, 809 (1987).CrossRefGoogle Scholar
25Lawn, B., Appl. Phys. Lett. 47, 809 (1985).CrossRefGoogle Scholar
26Lawson, L., “Computational Aspects of a Model of Thermo-mechanical Fatigue in a Lead-Base Alloy”, AIP document no. PAPS JMREEE-8-745-108 for 108 pages of supplementary material. Order prepaid by PAPS number and journal reference from the American Institute of Physics Auxiliary Publication Service, 335 East 45th Street, New York, NY 10017.Google Scholar
27Lawson, L. and Meshii, M., Scripta Metall. et Mater. 25, 1713 (1991).CrossRefGoogle Scholar
28Schroeder, H. and Schilling, W., Radiat. Eff. 30, 243 (1973).CrossRefGoogle Scholar
29Noda, T., Kainuma, T., and Okada, M., J. Jpn. Inst. Met. 48, 30 (1984).Google Scholar
30Noda, T. and Okada, M., Trans. Jpn. Inst. Met. 26, 505 (1985).CrossRefGoogle Scholar
31Hwang, J. and Balluffi, R.W., Scripta Metall. 25, 709 (1978).CrossRefGoogle Scholar
32Hondros, E. and Seah, M., Scripta Metall. 6, 1007 (1972).CrossRefGoogle Scholar
33Baranova, V.I.et al, Fiz. Khim. Obrab. Mater. 2, 61 (1968).Google Scholar
34Perkins, R., Oxid. Met. 9, 127 (1975).CrossRefGoogle Scholar
35Smithells Metals Reference Book, edited by Brandes, E. (Butterworths, London, 1983).Google Scholar
36Danilova, A. I., Danilov, V. I., and Spektor, E. Z., Doklady Akad. Nauk. SSSR 82, 561 (1952).Google Scholar
37Harrison, L.G., Trans. Faraday Society 57, 1191 (1961).CrossRefGoogle Scholar
38and, B. ThompsonStrong, R., J. Phys. Chem. 67, 594 (1963).Google Scholar
39Hapase, M., Gharpurey, M., and Biswas, A., Surf. Sci. 12, 85 (1968).CrossRefGoogle Scholar
40Mogami, K., Hayashi, T., Ando, K., and Ogura, N., Int. J. Pres. Ves. Piping 44, 85 (1990).CrossRefGoogle Scholar
41Goldman, N. and Hutchinson, J., Int. J. Solids Structures 11, 575 (1975).CrossRefGoogle Scholar
42Reynolds, A. and Stoner, G., Metall. Trans. A 22A, 1849 (1991).CrossRefGoogle Scholar
43Westwood, A., Preece, C., and Kamdar, M., Trans. ASM 60, 723 (1967).Google Scholar
44Cottrell, A., Trans. Metall. Soc. AIME 212, 192 (1958).Google Scholar
45Stroh, A., Proc. Roy. Soc. Ser. A 223, 404 (1954).Google Scholar
46Weertman, J., J. Appl. Phys. 60, 1877 (1986).CrossRefGoogle Scholar
47Ashurst, W. and Hoover, W., Phys. Rev. B 14, 1465 (1976).CrossRefGoogle Scholar
48Paskin, A., Massoumzadeh, B., Shukla, K., Sieradzki, K., and Dienes, G. J., Acta Metall. 33, 1987 (1985).CrossRefGoogle Scholar
49Mura, T. and Hirose, Y., in Dislocations in Solids: Some Recent Advances, edited by Markenscoff, X. (ASME, New York, 1985), pp. 5968.Google Scholar
50Konetzki, R., Chang, Y.A., and Marcotte, V., J. Mater. Res. 4, 1421 (1989).CrossRefGoogle Scholar
51Carslaw, H. and Jaeger, J., Conduction of Heat in Solids (Clarendon, Oxford, 1986), pp. 1315.Google Scholar
52Vinyard, G. H., J. Phys. Chem. Solids 3, 121 (1957).CrossRefGoogle Scholar
53and, L. A. GirifalcoWelch, D. O., Point Defects and Diffusion in Strained Metals (Gordon and Breach, New York, 1967).Google Scholar
54Yavari, A. and Turnbull, D., Acta Metall. 30, 1171 (1982).CrossRefGoogle Scholar
55Damask, A. and Dienes, G., Point Defects in Metals (Gordon and Breach, New York, 1963).Google Scholar
56Skelton, R. P., Philos. Mag. 14, 583 (1966).CrossRefGoogle Scholar
57Vaynman, S., Fine, M. E., and Jeannotte, D., Metall. Trans. A 19A, 1051 (1988).CrossRefGoogle Scholar
58Hall, E.O., Proc. Phys. Soc. London B64, 747 (1951).CrossRefGoogle Scholar