Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T20:58:56.788Z Has data issue: false hasContentIssue false

Mixed-mode mechanical responses of Ni(111)/α-Al2O3(0001) interface by first-principle calculations

Published online by Cambridge University Press:  21 October 2013

Xiancong Guo
Affiliation:
Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
Zeying Bao
Affiliation:
Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
Fulin Shang*
Affiliation:
Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Under the mixed-mode loading condition, mechanical responses of the Al-terminated O-site Ni(111)/α-Al2O3(0001) interface are investigated using first-principle calculations. The displacement-controlled loadings along 22.5, 45, and 67.5° orientations with respect to the interface are applied. The tension and shear responses of the interface are elaborated according to the computational results, including the mechanical strengths, the effect of tension softening, and the failure characteristic. In addition, the stress versus displacement relationships are derived out based on the general approach suggested by [Sun et al., Mater. Sci. Eng., A170, 67 (1993)], and the deviations between the analytical and computational results are examined in particular. Furthermore, the potential function and its development of this interface are discussed in detail.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., and Pettit, F.S.: Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 46, 505 (2001).CrossRefGoogle Scholar
Padture, N.P., Gell, M., and Jordan, E.H.: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).CrossRefGoogle ScholarPubMed
Zhang, W., Smith, J.R., and Evans, A.G.: The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3. Acta Mater. 50, 3803 (2002).CrossRefGoogle Scholar
Shi, S., Tanaka, S., and Kohyama, M.: First-principles study of the tensile strength and failure of α-Al2O3(0001)/Ni(111) interfaces. Phys. Rev. B 76, 075431 (2007).CrossRefGoogle Scholar
Jiang, Y., Wei, Y.G., Smith, J.R., Hutchinson, J.W., and Evans, A.G.: First principles based predictions of the toughness of a metal/oxide interface. Int. J. Mater. Res. 101, 8 (2010).CrossRefGoogle Scholar
Guo, X. and Shang, F.: Reinvestigation of the tensile strength and fracture property of Ni(111)/α-Al2O3(0001) interfaces by first-principle calculations. Comp. Mater. Sci. 50, 1711 (2011).CrossRefGoogle Scholar
Marino, K.A., Hinnemann, B., and Carter, E.A.: Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory. Proc. Natl. Acad. Sci. U.S.A. 108, 5480 (2011).CrossRefGoogle Scholar
Guo, X. and Shang, F.: Shear strength and sliding behavior of Ni/Al2O3 interfaces: A first-principle study. J. Mater. Res. 27, 1237 (2012).CrossRefGoogle Scholar
Meltzman, H., Mordehai, D., and Kaplan, W.D.: Solid-solid interface reconstruction at equilibrated Ni-Al2O3 interfaces. Acta Mater. 60, 4359 (2012).CrossRefGoogle Scholar
Shi, S., Tanaka, S., and Kohyama, M.: First-principles investigation of the atomic and electronic structures of α-Al2O3(0001)/Ni(111) interfaces. J. Am. Ceram. Soc. 90, 8 (2007).CrossRefGoogle Scholar
Shi, S., Tanaka, S., and Kohyama, M.: First-principles study on the adhesion nature of the α-Al2O3(0001)/Ni(111) interface. Modell. Simul. Mater. Sci. Eng. 14, S21 (2006).CrossRefGoogle Scholar
Shi, S., Tanaka, S., and Kohyama, M.: Influence of interface structure on Schottky barrier heights of α-Al2O3(0001)/Ni(111) interfaces: A first-principles study. Mater. Trans. 47, 2696 (2006).CrossRefGoogle Scholar
Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55 (1962).CrossRefGoogle Scholar
Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100 (1960).CrossRefGoogle Scholar
Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525 (1987).CrossRefGoogle Scholar
Hutchinson, J. and Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 191 (1992).Google Scholar
Krenn, C.R., Roundy, D., Cohen, M.L., Chrzan, D.C., and Morris, J.W. Jr.: Connecting atomistic and experimental estimates of ideal strength. Phys. Rev. B 65, 134111 (2002).CrossRefGoogle Scholar
Černý, M. and Pokluda, J.: Influence of normal stress on theoretical shear strength of fcc metals. Mater. Sci. Eng., A 483484, 692 (2008).CrossRefGoogle Scholar
Černý, M., Sesták, P., and Pokluda, J.: Influence of superimposed normal stress on shear strength of perfect bcc crystals. Comp. Mater. Sci. 47, 907 (2010).CrossRefGoogle Scholar
Umeno, Y. and Černý, M.: Effect of normal stress on the ideal shear strength in covalent crystals. Phys. Rev. B 77, 100101 (2008).CrossRefGoogle Scholar
Sun, Y., Beltz, G.E., and Rice, J.R.: Estimates from atomic models of tension-shear coupling in dislocation nucleation from a crack tip. Mater. Sci. Eng., A 170, 67 (1993).CrossRefGoogle Scholar
da Silva, K.D., Beltz, G.E., and Machová, A.: Tension–shear coupling in slip and decohesion of iron crystals. Scr. Mater. 49, 1163 (2003).CrossRefGoogle Scholar
Lazar, P. and Podloucky, R.: Ab initio study of tension-shear coupling in NiAl. Phys. Rev. B 75, 024112 (2007).CrossRefGoogle Scholar
Rose, J.H., Ferrante, J., and Smith, J.R.: Universal binding-energy curves for metals and bimetallic interfaces. Phys. Rev. Lett. 47, 675 (1981).CrossRefGoogle Scholar
Frenkel, J.: Zur theorie der elastizitätsgrenze und der festigkeit kristallinischer körper. Z. Phys. 37, 572 (1926).CrossRefGoogle Scholar
Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, B864 (1964).CrossRefGoogle Scholar
Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).CrossRefGoogle Scholar
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).CrossRefGoogle ScholarPubMed
Monkhorst, H.J. and Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Umeno, Y. and Kitamura, T.: Ab initio simulation on ideal shear strength of silicon. Mater. Sci. Eng., B 88, 79 (2002).CrossRefGoogle Scholar
Rice, J.R.: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 (1992).CrossRefGoogle Scholar