Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T07:38:45.343Z Has data issue: false hasContentIssue false

Misfit strain relaxations of (101)-oriented ferroelectric PbTiO3/(La, Sr)(Al, Ta)O3 thin film systems

Published online by Cambridge University Press:  28 December 2018

Yanpeng Feng
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and University of Chinese, Academy of Sciences, Beijing 100049, China
Yunlong Tang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Yinlian Zhu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Minjie Zou
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and School of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Xiuliang Ma
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and State Key Lab of Advanced Processing and Recycling on Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-index ferroelectric thin films show excellent dielectricity, piezoelectricity and switching behaviors. Understanding the misfit strain relaxation behavior may prove beneficial to gaining insights into the high-quality growth of high-index ferroelectric films. In this study, ferroelectric PbTiO3 thin films were deposited on the (101)-oriented (La, Sr)(Al, Ta)O3 substrate by pulsed laser deposition and were investigated using (scanning) transmission electron microscopy. Two types of misfit dislocations with line directions of 〈111〉 and [010] were found at the interface. The 〈111〉 dislocation exhibited Burgers vectors of a[011] or $a\left[ {0\bar{1}1} \right]$, while the [010] dislocation featured Burgers vectors of $a\left[ {\bar{1}01} \right]$. The former might be generated by gliding, and the latter by climbing. We propose that the misfit strain relaxation in this film system basically results from the formation of dislocations and the residual misfit strain is relaxed via the formation of 90° ac domains.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954 (2007).CrossRefGoogle ScholarPubMed
Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., and Streiffer, S.: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).CrossRefGoogle Scholar
Martin, L.W. and Rappe, A.M.: Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 1 (2016).Google Scholar
Schlom, D.G., Chen, L.Q., Fennie, C.J., Gopalan, V., Muller, D.A., Pan, X.Q., Ramesh, R., and Uecker, R.: Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118 (2014).CrossRefGoogle Scholar
Hu, S.Y., Li, Y.L., and Chen, L.Q.: Effect of interfacial dislocations on ferroelectric phase stability and domain morphology in a thin film—A phase-field model. J. Appl. Phys. 94, 2542 (2003).CrossRefGoogle Scholar
Su, D., Meng, Q., Vaz, C.A.F., Han, M-G., Segal, Y., Walker, F.J., Sawicki, M., Broadbridge, C., and Ahn, C.H.: Origin of 90° domain wall pinning in Pb(Zr0.2Ti0.8)O3 heteroepitaxial thin films. Appl. Phys. Lett. 99, 102902 (2011).CrossRefGoogle Scholar
Liu, Y., Tang, Y.L., Zhu, Y.L., Wang, W.Y., and Ma, X.L.: Spatial coupling of ferroelectric domain walls and crystallographic defects in the PbTiO3 films. Adv. Mater. Interfaces 3, 1600342 (2016).CrossRefGoogle Scholar
Chu, M.W., Szafraniak, I., Scholz, R., Harnagea, C., Hesse, D., Alexe, M., and Gosele, U.: Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater. 3, 87 (2004).CrossRefGoogle ScholarPubMed
Nagarajan, V., Jia, C.L., Kohlstedt, H., Waser, R., Misirlioglu, I.B., Alpay, S.P., and Ramesh, R.: Misfit dislocations in nanoscale ferroelectric heterostructures. Appl. Phys. Lett. 86, 192910 (2005).CrossRefGoogle Scholar
Jia, C.L., Mi, S.B., Urban, K., Vrejoiu, I., Alexe, M., and Hesse, D.: Effect of a single dislocation in a heterostructure layer on the local polarization of a ferroelectric layer. Phys. Rev. Lett. 102, 117601 (2009).CrossRefGoogle Scholar
Gao, P., Nelson, C.T., Jokisaari, J.R., Baek, S.H., Bark, C.W., Zhang, Y., Wang, E., Schlom, D.G., Eom, C.B., and Pan, X.Q.: Revealing the role of defects in ferroelectric switching with atomic resolution. Nat. Commun. 2, 591 (2011).CrossRefGoogle ScholarPubMed
Jain, S.C., Harker, A.H., and Cowley, R.A.: Misfit strain and misfit dislocations in lattice mismatched epitaxial layers and other systems. Philos. Mag. A 75, 1461 (1997).CrossRefGoogle Scholar
Wu, H.H., Wang, J., Cao, S.G., and Zhang, T.Y.: Effect of dislocation walls on the polarization switching of a ferroelectric single crystal. Appl. Phys. Lett. 102, 232904 (2013).CrossRefGoogle Scholar
Tang, Y.L., Zhu, Y.L., Liu, Y., Wang, Y.J., and Ma, X.L.: Giant linear strain gradient with extremely low elastic energy in a perovskite nanostructure array. Nat. Commun. 8, 15994 (2017).CrossRefGoogle Scholar
Stemmer, S., Streiffer, S.K., Ernst, F., and Ruhle, M.: Dislocations in PbTiO3 thin films. Phys. Status Solidi A 147, 135 (1995).CrossRefGoogle Scholar
Suzuki, T., Nishi, Y., and Fujimoto, M.: Analysis of misfit relaxation in heteroepitaxial BaTiO3 thin films. Philos. Mag. A 79, 2461 (1999).CrossRefGoogle Scholar
Zhu, Y.L., Ma, X.L., Li, D.X., Lu, H.B., Chen, Z.H., and Yang, G.Z.: Microstructural analyses of a highly conductive Nb-doped SrTiO3 film. Acta Mater. 53, 1277 (2005).CrossRefGoogle Scholar
Misirlioglu, I.B., Vasiliev, A.L., Alpay, S.P., Aindow, M., and Ramesh, R.: Defect microstructures in epitaxial PbZr0.2Ti0.8O3 films grown on (001) SrTiO3 by pulsed laser deposition. J. Mater. Sci. 41, 697 (2006).CrossRefGoogle Scholar
Qin, Y.L., Jia, C.L., Urban, K., Hao, J.H., and Xi, X.X.: Dislocations in SrTiO3 thin films grown on LaAlO3 substrates. J. Mater. Res. 17, 3117 (2011).CrossRefGoogle Scholar
Tang, Y.L., Zhu, Y.L., Meng, H., Zhang, Y.Q., and Ma, X.L.: Misfit dislocations of anisotropic magnetoresistant Nd0.45Sr0.55MnO3 thin films grown on SrTiO3 (110) substrates. Acta Mater. 60, 5975 (2012).CrossRefGoogle Scholar
Tang, Y.L., Zhu, Y.L., Zhang, Y.Q., Zhang, Z.D., and Ma, X.L.: Nanostructured Nd0.45Sr0.55MnO3 films grown on SrTiO3 (110). J. Mater. Res. 28, 1692 (2013).CrossRefGoogle Scholar
Shen, X., Yamada, T., Lin, R., Kamo, T., Funakubo, H., Wu, D., Xin, H.L., and Su, D.: Interfacial dislocations in (111) oriented (Ba0.7Sr0.3)TiO3 films on SrTiO3 single crystal. Appl. Phys. Lett. 107, 141605 (2015).CrossRefGoogle Scholar
Xu, Y.B., Tang, Y.L., Zhu, Y.L., Liu, Y., Li, S., Zhang, S.R., and Ma, X.L.: Misfit strain relaxation of ferroelectric PbTiO3/LaAlO3 (111) thin film system. Sci. Rep. 6, 35172 (2016).CrossRefGoogle ScholarPubMed
Mtebwa, M., Mazzalai, A., Sandu, C.S., Crassous, A., and Setter, N.: Engineered a/c domain patterns in multilayer (110) epitaxial Pb(Zr, Ti)O3 thin films: Impact on domain compliance and piezoelectric properties. AIP Adv. 6, 055104 (2016).CrossRefGoogle Scholar
Feng, Y.P., Tang, Y.L., Ma, D.S., Zhu, Y.L., Zou, M.J., Han, M.J., Ma, J.Y., and Ma, X.L.: Thickness-dependent evolution of piezoresponses and stripe 90° domains in (101)-oriented ferroelectric PbTiO3 thin films. ACS Appl. Mater. Interfaces 10, 24627 (2018).CrossRefGoogle ScholarPubMed
Xu, R.J., Karthik, J., Damodaran, A.R., and Martin, L.W.: Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nat. Commun. 5, 3120 (2014).CrossRefGoogle ScholarPubMed
Xu, R.J., Liu, S., Grinberg, I., Karthik, J., Damodaran, A.R., Rappe, A.M., and Martin, L.W.: Ferroelectric polarization reversal via successive ferroelastic transitions. Nat. Mater. 14, 79 (2015).CrossRefGoogle ScholarPubMed
Zhang, W., Cheng, H., Yang, Q., Hu, F., and Ouyang, J.: Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin films. Ceram. Int. 42, 4400 (2016).CrossRefGoogle Scholar
Glazer, A.M. and Mabud, S.A.: Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO3. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 34, 1065 (1978).CrossRefGoogle Scholar
Mateika, D., Kohler, H., Laudan, H., and Volkel, E.: Mixed-perovskite substrates for high-Tc superconductors. J. Cryst. Growth 109, 447 (1991).CrossRefGoogle Scholar
Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy, 2nd ed. (Springer, New York, 2009); p. 445.CrossRefGoogle Scholar
Pennycook, S.J. and Jesson, D.E.: High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14 (1991).CrossRefGoogle Scholar
Hytch, M.J., Snoeck, E., and Kilaas, R.: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131 (1998).CrossRefGoogle Scholar
Tang, Y.L., Zhu, Y.L., and Ma, X.L.: On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns. Ultramicroscopy 160, 57 (2016).CrossRefGoogle ScholarPubMed
Shirane, G., Hoshino, S., and Suzuki, K.: X-ray study of the phase transition in lead titanate. Phys. Rev. 80, 1105 (1950).CrossRefGoogle Scholar
Chakoumakos, B.C., Schlom, D.G., Urbanik, M., and Luine, J.: Thermal expansion of LaAlO3 and (La, Sr)(Al, Ta)O3, substrate materials for superconducting thin-film device applications. J. Appl. Phys. 83, 1979 (1998).CrossRefGoogle Scholar
Langjahr, P.A., Lange, F.F., Wagner, T., and Ruhle, M.: Lattice mismatch accommodation in perovskite films on perovskite substrates. Acta Mater. 46, 773 (1998).CrossRefGoogle Scholar