Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T07:28:00.609Z Has data issue: false hasContentIssue false

Microwaves as a synthetic route for preparing electrochemically active TiO2 nanoparticles

Published online by Cambridge University Press:  24 September 2012

Damien Monti
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB, E-08193 Bellaterra, Catalonia, Spain; and Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
Alexandre Ponrouch
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB, E-08193 Bellaterra, Catalonia, Spain
Marc Estruga
Affiliation:
Departament de Química, Universitat Autònoma de Barcelona, Campus UAB, E-08193 Bellaterra, Catalonia, Spain
Maria Rosa Palacín*
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB, E-08193 Bellaterra, Catalonia, Spain
José Antonio Ayllón*
Affiliation:
Departament de Química, Universitat Autònoma de Barcelona, Campus UAB, E-08193 Bellaterra, Catalonia, Spain
Anna Roig
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus UAB, E-08193 Bellaterra, Catalonia, Spain
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Nanocrystalline anatase was synthesized, using both domestic and laboratory microwave ovens, from different precursors. Nanoparticulate anatase was obtained after microwave irradiation of tetra-butyl orthotitanate solution in benzyl alcohol. As-synthesized samples have orange color due to the presence of organics that were eliminated after annealing at 500 °C, whereas the size of small anatase nanocrystals (around 8 nm) was preserved. Other nanocrystalline anatase samples were obtained from hexafluorotitanate-organic salt ionic liquid-like precursors. In this case, use of a domestic microwave oven and very short processing times (1–3 min irradiation time) were involved. Good specific capacity values and capacity retention at high C rates for insertion/deinsertion of Li+were recorded when testing such nanoparticles as electrode material in lithium cells. The electrochemical performances were found be strongly dependent on the phase composition, which in turn could be tuned through the synthetic procedure.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gussman, N.: We’re history - titanium dioxide: From black sand to white pigment. Chem. Eng. Prog. 101, 64 (2005).Google Scholar
Rasmusson, L., Roos, J., and Bystedt, H.: A 10-year follow-up study of titanium dioxide-blasted implants. Clin. Implant Dent. R. 7, 36 (2005).Google Scholar
Fujishima, A. and Zhang, X.T.: Titanium dioxide photocatalysis: Present situation and future approaches. C.R. Chim. 9, 750 (2006).Google Scholar
Henderson, M.A.: A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185 (2011).CrossRefGoogle Scholar
Qiao, Y., Bao, S.J., Li, C.M., Cui, X.Q., Lu, Z.S., and Guo, J.: Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2, 113 (2008).Google Scholar
Peter, L.M.: The Gratzel cell: Where next? J. Phys. Chem. Lett. 2, 1861 (2012).Google Scholar
Yuan, S.J., Mao, R.Y., Li, Y.G., Zhang, Q.H., and Wang, H.Z.: Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determination of chemical oxygen demand. Electrochim. Acta 60, 347 (2012).Google Scholar
Hu, J.H., Guan, S.K., Zhang, C.L., Ren, C.X., Wen, C.L., Zeng, Z.Q., and Peng, L.: Corrosion protection of AZ31 magnesium alloy by a TiO2 coating prepared by LPD method. Surf. Coat. Technol. 203, 2017 (2009).Google Scholar
Lei, C.X., Zhou, H., Feng, Z.D., Zhu, Y.F., and Du, R.G.: Liquid phase deposition (LPD) of TiO2 thin films as photoanodes for cathodic protection of stainless steel. J. Alloys Compd. 513, 552 (2012).CrossRefGoogle Scholar
Chao, S. and Dogan, F.: Processing and dielectric properties of TiO2 thick films for high-energy density capacitor applications. Int. J. Appl. Ceram. Technol. 8, 1363 (2011).Google Scholar
Majewski, L.A., Schroeder, R., and Grell, M.: Low-voltage, high-performance organic field-effect transistors with an ultrathin TiO2 layer as gate insulator. Adv. Funct. Mater. 15, 1017 (2005).CrossRefGoogle Scholar
Ohzuku, T., Takehara, Z., and Yoshizawa, S.: Nonaqueous lithium-titanium dioxide cell. Electrochim. Acta 24, 219 (1979).Google Scholar
Huang, S.Y., Kavan, L., Exnar, I., and Gratzel, M.: Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J. Electrochem. Soc. 142, L142 (1995).Google Scholar
Su, X., Wu, Q.L., Zhan, X., Wu, J., Wei, S.Y., and Guo, Z.H.: Advanced titania nanostructures and composites for lithium ion battery. J. Mater. Sci. 47, 2519 (2012).Google Scholar
Yang, Z.G., Choi, D., Kerisit, S., Rosso, K.M., Wang, D.H., Zhang, J., Graff, G., and Liu, J.: Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 192, 588 (2009).CrossRefGoogle Scholar
Chen, J., Wang, J., Zhang, X., and Jin, Y.L.: Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater. Chem. Phys. 108, 421 (2008).Google Scholar
Deshmukh, R.G., Badadhe, S.S., and Mulla, I.S.: Microwave-assisted synthesis and humidity sensing of nanostructured alpha-Fe2O3. Mater. Res. Bull. 44, 1179 (2009).Google Scholar
Godinho, M., Ribeiro, C., Longo, E., and Leite, E.R.: Influence of microwave heating on the growth of gadolinium-doped cerium oxide nanorods. Cryst. Growth Des. 8, 384 (2008).Google Scholar
Washington, A.L. and Strouse, G.F.: Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes. J. Am. Chem. Soc. 130, 8916 (2008).Google Scholar
Zheng, X.W., Hu, Q.T., and Sun, C.S.: Efficient rapid microwave-assisted route to synthesize InP micrometer hollow spheres. Mater. Res. Bull. 44, 216 (2009).Google Scholar
Pascu, O., Caicedo, J.M., Lopez-Garcia, M., Canalejas, V., Blanco, A., Lopez, C., Arbiol, J., Fontcuberta, J., Roig, A., and Herranz, G.: Ultrathin conformal coating for complex magnetophotonic structures. Nanoscale 3, 4811 (2011).Google Scholar
Pascu, O., Carenza, E., Gich, M., Estradé, S., Peiré, F., Herranz, G., and Roig, A.: Surface reactivity of iron oxide nanoparticles by microwave-assisted synthesis; comparison with the thermal decomposition route. J. Phys. Chem. C 116, 15108 (2012).CrossRefGoogle Scholar
Mingos, D.M.P. and Baghurst, D.R.: Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 20, 1 (1991).Google Scholar
Bilecka, I. and Niederberger, M.: Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2, 1358 (2010).CrossRefGoogle ScholarPubMed
Stuerga, D., Gonon, K., and Lallemant, M.: Microwave-heating as a new way to induce selectivity between competitive reactions - application to isomeric ratio control in sulfonation of naphthalene. Tetrahedron 49, 6229 (1993).Google Scholar
Addamo, M., Bellardita, M., Carriazo, D., Di Paola, A., Milioto, S., Palmisano, L., and Rives, V.: Inorganic gels as precursors of TiO2 photocatalysts prepared by low-temperature microwave or thermal treatment. App. Catal., B 84, 742 (2008).Google Scholar
Bilecka, I., Djerdj, I., and Niederberger, M.: One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem. Commun. 7, 886 (2008).CrossRefGoogle Scholar
Chung, C.C., Chung, T.W., and Yang, T.C.K.: Rapid synthesis of titania nanowires by microwave-assisted hydrothermal treatments. Ind. Eng. Chem. Res. 47, 2301 (2008).Google Scholar
Dufour, F., Cassaignon, S., Durupthy, O., Colbeau-Justin, C., and Chanéac, C.: Do TiO2 nanoparticles really taste better when cooked in a microwave oven? Eur. J. Inorg. Chem. 16, 2707 (2012).Google Scholar
Gressel-Michel, E., Chaumont, D., and Stuerga, D.: From a microwave flash-synthesized TiO2 colloidal suspension to TiO2 thin films. J. Colloid Interface Sci. 285, 674 (2005).CrossRefGoogle ScholarPubMed
Jhung, S.H., Jin, T.H., Hwang, Y.K., and Chang, J.S.: Microwave effect in the fast synthesis of microporous materials: Which stage between nucleation and crystal growth is accelerated by microwave irradiation? Chem. Eur. J. 13, 4410 (2007).Google Scholar
Conner, W.C. and Tompsett, G.A.: How could and do microwaves influence chemistry at interfaces? J. Phys. Chem. B 112, 2110 (2008).CrossRefGoogle ScholarPubMed
Estruga, M., Domingo, C., and Ayllon, J.A.: Microwave radiation as heating method in the synthesis of titanium dioxide nanoparticles from hexafluorotitanate-organic salts. Mater. Res. Bull. 45, 1224 (2010).Google Scholar
Jia, X.T., He, W., Zhang, X.D., Zhao, H.S., Li, Z.M., and Feng, Y.J.: Microwave-assisted synthesis of anatase TiO2 nanorods with mesopores. Nanotechnology 18, 075602 (2007).Google Scholar
Pol, V.G., Langzam, Y., and Zaban, A.: Application of microwave superheating for the synthesis of TiO2 rods. Langmuir 23, 11211 (2007).Google Scholar
Ding, K.L., Miao, Z.J., Liu, Z.M., Zhang, Z.F., Han, B.X., An, G.M., Miao, S.D., and Xie, Y.: Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J. Am. Chem.Soc. 129, 6362 (2007).Google Scholar
Hassan, H.M.A., Abdelsayed, V., Khder, A.E.R.S., AbouZeid, K.M., Terner, J., El-Shall, M.S., Al-Resayes, S.I., and El-Azhary, A.A.: Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 19, 3832 (2009).CrossRefGoogle Scholar
Jacob, D.S., Genish, I., Klein, L., and Gedanken, A.: Carbon-coated core shell structured copper and nickel nanoparticles synthesized in an ionic liquid. J. Phys. Chem. B 110, 17711 (2006).Google Scholar
Parada, C. and Moran, E.: Microwave-assisted synthesis and magnetic study of nanosized Ni/NiO materials. Chem. Mater. 18, 2719 (2006).Google Scholar
Yacou, C., Fontaine, M.L., Ayral, A., Lacroix-Desmazes, P., Albouy, P.A., and Julbe, A.: One pot synthesis of hierarchical porous silica membrane material with dispersed Pt nanoparticles using a microwave-assisted sol-gel route. J. Mater. Chem. 18, 4274 (2008).Google Scholar
Kappe, C.O.: Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 43, 6250 (2004).Google Scholar
Yoon, S., Lee, E-S., and Manthiram, A.: Microwave-solvothermal synthesis of various polymorphs of nanostructured TiO2 in different alcohol media and their lithium ion storage properties. Inorg. Chem. 51, 3505 (2012).Google Scholar
Zhang, D., Wen, M., Zhang, P., Zhu, J., Li, G., and Li, H.: Microwave-induced synthesis of porous single-crystal-like TiO2 with excellent lithium storage properties. Langmuir 28, 4543 (2012).Google Scholar
Deki, S., Aoi, Y., Hiroi, O., and Kajinami, A.: Titanium (IV) oxide thin films prepared from aqueous solution. Chem. Lett. 25, 433 (1996).Google Scholar
Rodriguez-Carvajal, J.: Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993).Google Scholar
Schreiner, W.N. and Jenkins, R.: Profile fitting for quantitative analysis in x-ray-powder diffraction. Adv. X-Ray Anal. 26, 141 (1983).Google Scholar
Guyomard, D. and Tarascon, J.M.: Li metal-free rechargeable LiMn2O4/carbon cells - their understanding and optimization. J. Electrochem. Soc. 139, 937 (1992).CrossRefGoogle Scholar
Ponrouch, A. and Palacin, M.R.: On the impact of the slurry mixing procedure in the electrochemical performance of composite electrodes for Li-ion batteries: A case study for mesocarbon microbeads (MCMB) graphite and Co3O4. J. Power Sources 196, 9682 (2011).Google Scholar
Niederberger, M., Bard, M.H., and Stucky, G.D.: Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano objects with controlled dimensionality. J. Am. Chem. Soc. 24, 13642 (2002).CrossRefGoogle Scholar
Niederberger, M., Bartl, M.H., and Stucky, G.D.: Benzyl alcohol and titanium tetrachloride - a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater. 14, 4364 (2002).Google Scholar
Jiang, C.H., Wei, M.D., Qi, Z.M., Kudo, T., Honma, I., and Zhou, H.S.: Particle size dependence of the lithium storage capability and high-rate performance of nanocrystalline anatase TiO2 electrode. J. Power Sources 166, 239 (2007).Google Scholar
Stashans, A., Lunell, S., Bergstrom, R., Hagfeldt, A., and Lindquist, S.E.: Theoretical study of lithium intercalation in rutile and anatase. Phys. Rev. B 53, 159 (1996).Google Scholar
Sudant, G., Baudrin, E., Larcher, D., and Tarascon, J.M.: Electrochemical lithium reactivity with nanotextured anatase-type TiO2. J. Mater. Chem. 15, 1263 (2005).Google Scholar
Wagemaker, M., Borghols, W.J.H., and Mulder, F.M.: Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4323 (2007).Google Scholar
Bruce, P.G.: Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ionics 179, 752 (2008).Google Scholar
Ren, Y., Liu, Z., Pourpoint, F., Armstrong, A.R., Grey, C.P., and Bruce, P.G.: Nanoparticulate TiO2(B): An anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51, 2164 (2012).Google Scholar
Estruga, M., Domingo, C., and Ayllon, J.A.: Low-temperature and ambient-pressure synthesis of TiO2-B. Mater. Lett. 64, 2357 (2010).Google Scholar
Ligneel, E., Lestriez, B., Richard, O., and Guyomard, D.: Optimizing lithium battery performance from a tailor-made processing of the positive composite electrode. J. Phys. Chem. Solids 67, 1275 (2006).Google Scholar
Jung, H.G., Oh, S.W., Ce, J., Jayaprakash, N., and Sun, Y.K.: Mesoporous TiO2 nanonetworks: Anode for high-power lithium battery applications. Electrochem. Comm. 11, 756 (2009).Google Scholar
Kubiak, P., Fröschl, T., Hüsing, N., Hörmann, U., Kaiser, U., Schiller, R., Weiss, C.K., Landfester, K., and Wohlfahrt-Mehrens, M.: TiO2 anatase nanoparticle networks: Synthesis, structure and electrochemical performance. Small 7, 1690 (2011).Google Scholar
Wang, H.E., Cheng, H., Liu, C., Chen, X., Jiang, A., Lu, Z., Li, Y.Y., Chung, C.Y., Zhang, W., Zapien, J.A., Martinu, L., and Bello, I.: Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications. J. Power Sources 196, 6394 (2011).Google Scholar
Supplementary material: File

Monti Supplementary Material

Figure

Download Monti Supplementary Material(File)
File 299 KB