Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T19:35:55.688Z Has data issue: false hasContentIssue false

Microwave-hydrothermal synthesis and photoluminescence characteristics of zinc oxide powders

Published online by Cambridge University Press:  03 March 2011

Chung-Hsin Lu*
Affiliation:
Electronic and Electro-optical Ceramics Lab, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, Republic of China
Wen-Jeng Hwang
Affiliation:
Electronic and Electro-optical Ceramics Lab, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, Republic of China
S.V. Godbole
Affiliation:
Electronic and Electro-optical Ceramics Lab, Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, Republic of China
*
a) Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

A microwave-hydrothermal process for the synthesis of crystalline zinc oxide powders has been developed in this study. Well-crystallized zinc oxide powders exhibiting different morphology, crystallinity, and particle size have been successfully prepared by controlling the process temperature and molarity of NH4OH in the starting solution. With increasing process temperature and NH4OH molarity during synthesis, the morphology of ZnO powders changes from flowerlike agglomeration to a well-developed rodlike shape. The band gap of ZnO powders increases with a decrease in the molarity of NH4OH during synthesis. Vacuum ultraviolet radiation (VUV) excited luminescence studies for ZnO powders reveal an excitation band at 161 nm possibly due to the absorption of O2− 2p electrons in the valence band. The VUV excitation band of ZnO powders observed at 161 nm will be useful for excitation of gas-discharged plasma display devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Natsume, Y. and Sakata, H.: Electrical conductivity and optical properties of ZnO films annealed in hydrogen atmosphere after chemical vapor deposition. J. Mater. Sci.-Mater. Electron. 12, 87 (2001).CrossRefGoogle Scholar
2.Sundaram, K.B. and Khan, A.: Characterization and optimization of zinc oxide films by rf magnetron sputtering. Thin Solid Films 295, 87 (1997).CrossRefGoogle Scholar
3.Ohta, H., Orita, M., Hirano, M. and Hosono, H.: Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO. J. Appl. Phys. 89, 5720 (2001).CrossRefGoogle Scholar
4.Iwasaki, M., Inubushi, Y. and Ito, S.: New route to prepare ultrafine ZnO particles and its reaction mechanism. J. Mater. Sci. Lett. 16, 1503 (1997).CrossRefGoogle Scholar
5.Eilers, H. and Tissue, B.M.: Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas-phase condensation with CW-CO2 laser-heating. Mater. Lett. 24, 261 (1995).CrossRefGoogle Scholar
6.Znaidi, L., Illia, G.J.A.A. Soler, Benyahia, S., Sanchez, C. and Kanaev, A.V.: Oriented ZnO thin films synthesis by sol-gel process for laser application. Thin Solid Films 428, 257 (2003).CrossRefGoogle Scholar
7.Jezequel, D., Guenot, J., Jouini, N. and Fievet, F.: Submicrometer zinc-oxide particles-elaboration in polyol medium and morphological-characteristics. J. Mater. Res. 10, 77 (1995).CrossRefGoogle Scholar
8.Andeen, D., Loeffler, L., Padture, N. and Lange, F.F.: Crystal chemistry of epitaxial ZnO on (111) MgAl2O4 produced by hydrothermal synthesis. J. Cryst. Growth 259, 103 (2003).CrossRefGoogle Scholar
9.Lu, C.H. and Yeh, C.H.: Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder. Ceram. Int. 26, 351 (2000).CrossRefGoogle Scholar
10.Komarneni, S., Roy, R. and Li, Q.H.: Microwave-hydrothermal synthesis of ceramic powder. Mater. Res. Bull. 27, 1393 (1992).CrossRefGoogle Scholar
11.Bondioli, F., Ferrari, A.M., Leonelli, C., Siligardi, C. and Pellacani, G.C.: Microwave-hydrothermal synthesis of nanocrystalline zirconia powders. J. Am. Ceram. Soc. 84, 2728 (2001).CrossRefGoogle Scholar
12.Katsuki, H. and Komarneni, S.: Microwave-hydrothermal synthesis of monodispersed nanophase alpha-Fe2O3. J. Am. Ceram. Soc. 84, 2313 (2001).CrossRefGoogle Scholar
13.Newalkar, B.L., Komarneni, S. and Katsuki, H.: Microwave-hydrothermal synthesis and characterization of barium titanate powders. Mater. Res. Bull. 36, 2347 (2001).CrossRefGoogle Scholar
14.Komarneni, S., Komarneni, J.S., Newalkar, B.L. and Stout, S.: Microwave-hydrothermal synthesis of Al-substituted tobermorite from zeolites. Mater. Res. Bull. 37, 1025 (2002).CrossRefGoogle Scholar
15.Kumada, N., Kinomura, N. and Komarneni, S.: Microwave hydrothermal synthesis of ABi2O6 (A = Mg, Zn). Mater. Res. Bull. 33, 1411 (1998).CrossRefGoogle Scholar
16.Strachowski, T., Grzanka, E., Palosz, B., Presz, B., Slusarski, L. and Lojkowski, W.: Microwave driven hydrothermal synthesis of zinc oxide nanopowders. Solid State Phenomena 94, 187 (2003).CrossRefGoogle Scholar
17.Zhong, J., Kitai, A.H., Mascher, P. and Puff, W.: The influence of processing conditions on point-defects and luminescence-centers in ZnO. J. Electrochem. Soc. 140, 3644 (1993).CrossRefGoogle Scholar
18.Egelhaaf, H.J. and Oelkrug, D.: Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO. J. Cryst. Growth 161, 190 (1996).CrossRefGoogle Scholar
19.Look, D.C., Coskun, C., Claflin, B. and Farlow, G.C.: Electrical and optical properties of defects and impurities in ZnO. Physica B 340–342, 32 (2003).CrossRefGoogle Scholar
20.Yi, L.X., Xu, Z., Hou, Y.B., Zhang, X.Q., Wang, Y.S. and Xu, X.R.: The ultraviolet and blue luminescence properties of ZnO: Zn thin film. Chin. Sci. Bull. 46, 1223 (2001).CrossRefGoogle Scholar
21.Fu, Z., Yang, B., Li, L., Jia, C. and Wu, W.: An intense ultraviolet photoluminescence in sol-gel ZnO-SiO2 nanocomposites. J. Phys. Conden. Mater. 15, 2867 (2003).CrossRefGoogle Scholar
22.Powder Diffraction File, Card No. 36-1451. International Center for Diffraction Data, Newtown Square, PA.Google Scholar
23.Chen, D., Jiao, X. and Cheng, G.: Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun. 113, 363 (2000).CrossRefGoogle Scholar
24.Xu, H.Y., Wang, H., Zhang, Y.C., He, W.L., Zhu, M.K., Wang, B. and Yan, H.: Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceram. Int. 30, 93 (2004).CrossRefGoogle Scholar
25.Koch, U., Fojtik, A., Weller, H. and Henglein, A.: Photochemistry of semiconductor colloids preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 122, 507 (1985).CrossRefGoogle Scholar
26.Spanhel, L. and Anderson, M.A.: Semiconductor clusters in the sol-gel process-quantized aggregation, gelation, and crystal-growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, 2826 (1991).CrossRefGoogle Scholar
27.Hoyer, P. and Weller, H.: Size-dependent redox potentials of quantized zinc-oxide measured with an optically transparent thin-layer electrode. Chem. Phys. Lett. 221, 379 (1994).CrossRefGoogle Scholar
28.Redmond, G., Okeeffe, A., Burgess, C., Machale, C. and Fitzmaurice, D.: Spectroscopic determination of the flat-band potential of transparent nanocrystalline ZnO films. J. Phys. Chem. 97, 11081 (1993).CrossRefGoogle Scholar
29.Noack, V. and Eychmuller, A.: Annealing of nanometer-sized zinc oxide particles. Chem. Mater. 14, 1411 (2002).CrossRefGoogle Scholar
30.Ong, H.C., Li, A.S.K. and Du, G.T.: Depth profiling of ZnO thin films by cathodoluminescence. Appl. Phys. Lett. 78, 2667 (2001).CrossRefGoogle Scholar
31.Shi, C.S., Fu, Z.X., Guo, C.X., Ye, X.L., Wei, Y.G., Deng, J., Shi, J.Y. and Zhang, G.B.: UV luminescence and spectral properties of ZnO films deposited on Si substrates. J. Elec. Spect. Rel. Phen. 103, 629 (1999).CrossRefGoogle Scholar
32.Kohan, A.F., Ceder, G., Morgan, D. and Van Walle, C.G. de: First-principles study of native point defects in ZnO. Phys. Rev. B 61, 15019 (2000).CrossRefGoogle Scholar
33.Lima, S.A.M., Sigoli, F.A., Jafelicci, M. Jr. and Davolos, M.R.: Luminescent properties and lattice defects correlation on zinc oxide. Int. J. Inorg. Mater. 3, 749 (2001).CrossRefGoogle Scholar