Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:19:20.106Z Has data issue: false hasContentIssue false

Microstructures of the melt-powder-melt-growth processed YBaCuO

Published online by Cambridge University Press:  31 January 2011

K. Yamaguchi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
M. Murakami
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
H. Fujimoto
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
S. Gotoh
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
T. Oyama
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
N. Koshizuka
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
S. Tanaka
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135, Japan
Get access

Abstract

Microstructures of two MPMG processed YBaCuO materials with and without Y2BaCuO5 (211) inclusions were investigated by transmission electron microscopy. Using the MPMG process, it is possible to change the quantity of the 211 inclusions in the YBa2Cu3O7 (123) matrix. We prepared two YBaCuO samples with 0 and 30 vol. % 211 and with respective critical current density values of 2000 and 30 000 A/cm2 at 77 K and 1 T (magnetic field parallel to the c-axis). As possible pinning centers, we found stacking faults in the 123 matrix. However, we observed no appreciable change in their number and structure by introducing the 211 inclusions. Therefore, the difference in Jc values can be attributed to the 211 inclusion itself.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. V., Davis, M. E., Kammlott, G.W., and Fastnacht, R.A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
2.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).Google Scholar
3.Salama, K., Selvamanickam, V., Gao, L., and Sum, K., Appl. Phys. Lett. 54, 2352 (1989).Google Scholar
4.Meng, R. L., Kinalidis, C., Sun, Y. Y., Gao, L., Tao, Y. K., Hor, P. H., and Chu, C.W., Nature 345, 326 (1990).Google Scholar
5.Lian, Z., Pingxiang, Z., Ping, J., Keguang, W., Jingrong, W., and Xiaozu, W., Supercond. Sci. Technol. 3, 490 (1990).CrossRefGoogle Scholar
6.Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., Oyama, T., Shiohara, Y., and Tanaka, S., Advances in Superconductivity II (Springer-Verlag, Tokyo), p. 285.Google Scholar
7.Murakami, M., Gotoh, S., Fujimoto, H., Tamaguchi, K., Koshizuka, N., and Tanaka, S. (Proc. LT-19 Satellite Conf.), to appear in Supercond. Sci. Technol.Google Scholar
8.Matsushita, T., Cryogenics 30 Supplement, 817 (1990).CrossRefGoogle Scholar
9.Yamaguchi, K., Murakami, M., Fujimoto, H., Gotoh, S., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 29, LI428 (1990).Google Scholar