Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T18:03:35.846Z Has data issue: false hasContentIssue false

Microstructures and electrical resistivities of the RuO2 electrode on SiO2/Si annealed in the oxygen ambient

Published online by Cambridge University Press:  31 January 2011

Jeong Soo Lee
Affiliation:
LG Electronics Research Center, 16, Woomyeon-dong, Seocho-gu, Seoul 137–140, Korea
Hyun Ja Kwon
Affiliation:
LG Electronics Research Center, 16, Woomyeon-dong, Seocho-gu, Seoul 137–140, Korea
Young Woo Jeong
Affiliation:
LG Electronics Research Center, 16, Woomyeon-dong, Seocho-gu, Seoul 137–140, Korea
Hyun Ha Kim
Affiliation:
LG Electronics Research Center, 16, Woomyeon-dong, Seocho-gu, Seoul 137–140, Korea
Cha Yeon Kim
Affiliation:
LG Electronics Research Center, 16, Woomyeon-dong, Seocho-gu, Seoul 137–140, Korea
Get access

Abstract

The electrical resistivity property of RuO2 thin films grown on the SiO2/Si substrate by reactive dc sputtering was examined in terms of microstructure using x-ray diffraction and cross-sectional transmission electron microscopy. As the samples were annealed in the oxygen ambient over the temperature range 300–700 °C, the resistivity decreased from 270 to 90 μΩcm with increasing annealing temperature. When heat treatment was performed below 500 °C, the strain which accumulated in the RuO2 layer during deposition was released without significant increase in grain size. It is thought that below 500 °C improvement in the crystallinity plays an important role in the variation of the resistivity. Although a considerable amount of growth of RuO2 grains was achieved, the columnar structure of the RuO2 layer in the as-deposited sample remained unchanged even after annealing at 700 °C. The resistivity improvement above 500 °C was driven mainly by the grain boundary annihilation.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Auciello, O., Gifford, K. D., and Kingon, A. I., Appl. Phys. Lett. 64, 2873 (1994).CrossRefGoogle Scholar
2.Dat, R., Lichtenwalner, D. J., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 64, 2673 (1994).CrossRefGoogle Scholar
3.Al-Shareef, H. N., Bellur, K. R., Auciello, O., and Kingon, A. I., Integrated Ferroelectrics 8, 151 (1995).CrossRefGoogle Scholar
4.Olowolafe, J. O., Jones, R. E. Jr, Campbell, A. C., Hedge, R. I., Mogab, C. J., and Gregory, R. B., J. Appl. Phys. 73, 1764 (1993).CrossRefGoogle Scholar
5.Fox, G. R., Trolier-McKinstry, S., Krupanidhi, S.B., and Casas, L.M., J. Mater. Res. 10, 1508 (1995).CrossRefGoogle Scholar
6.Park, K. H., Kim, C. Y., Jeong, Y. W., Kwon, H.J., Kim, K.Y., Lee, J.S., and Kim, S.T., J. Mater. Res. 10, 1790 (1995).CrossRefGoogle Scholar
7.Green, M.L., Gross, M.E., Papa, L.E., Schnoes, K.J., and Brasen, D., J. Electrochem. Soc. 132, 2077 (1985).Google Scholar
8.Kowala, E., So, F.C.T., Pan, E.T-S., and Nicolet, M-A., Appl. Phys. Lett. 50, 854 (1987).CrossRefGoogle Scholar
9.Krusin-Elbaum, L., Wittmer, M., and Yee, D. S., Appl. Phys. Lett. 50, 1879 (1987).CrossRefGoogle Scholar
10.Krusin-Elbaum, L. and Wittmer, M., J. Electrochem. Soc. 135, 2610 (1988).CrossRefGoogle Scholar
11.Takemura, K., Sakuma, T., and Miyasaka, Y., Appl. Phys. Lett. 64, 2967 (1994).CrossRefGoogle Scholar
12.Kwok, C., Vijay, D. P., Desu, S.B., Parikh, N. R., and Hill, E. A., in Proc. 4th Int. Symp. on Integrated Ferroelectrics (International Symposium on Integrated Ferroelectrics, Colorado Springs, CO, 1992), p. 412.Google Scholar
13.Lee, J. S., Jeong, Y.W., and Kim, S. T., Micros. Res. Technol. 33, 490 (1996).3.0.CO;2-P>CrossRefGoogle Scholar
14.Si, J. and Desu, S. B., J. Mater. Res. 8, 2644 (1993).CrossRefGoogle Scholar
15. JCPDS card no. 40–1290.Google Scholar
16.Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), p. 281.Google Scholar
17.Cox, P. A., The Electronic Structure and Chemistry of Solids (Oxford University Press, Oxford, 1986), p. 195.Google Scholar